1000 resultados para Water districts
Resumo:
We report a simple, reliable and one-step method of synthesizing ZnO porous structures at room temperature by anodization of zinc (Zn) sheet with water as an electrolyte and graphite as a counter electrode. We observed that the de-ionized (DI) water used in the experiment is slightly acidic (pH=5.8), which is due to the dissolution of carbon dioxide from the atmosphere forming carbonic acid. Porous ZnO is characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence (PL) studies. The current-transient measurement is carried out using a Gamry Instruments Reference 3000 and the thickness of the deposited films is measured using a Dektak surface profilometer. The PL, Raman and X-ray photoelectron spectroscopy are used to confirm the presence of ZnO phase. We have demonstrated that the hybrid structures of ZnO and poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) exhibit good rectifying characteristics. The evaluated barrier height and the ideality factor are 0.45 eV and 3.6, respectively.
Resumo:
The structure of the hydrogen bond network is a key element for understanding water's thermodynamic and kinetic anomalies. While ambient water is strongly believed to be a uniform, continuous hydrogen-bonded liquid, there is growing consensus that supercooled water is better described in terms of distinct domains with either a low-density ice-like structure or a high-density disordered one. We evidenced two distinct rotational mobilities of probe molecules in interstitial supercooled water of polycrystalline ice Banerjee D, et al. (2009) ESR evidence for 2 coexisting liquid phases in deeply supercooled bulk water. Proc Natl Acad Sci USA 106: 11448-11453]. Here we show that, by increasing the confinement of interstitial water, the mobility of probe molecules, surprisingly, increases. We argue that loose confinement allows the presence of ice-like regions in supercooled water, whereas a tighter confinement yields the suppression of this ordered fraction and leads to higher fluidity. Compelling evidence of the presence of ice-like regions is provided by the probe orientational entropy barrier which is set, through hydrogen bonding, by the configuration of the surrounding water molecules and yields a direct measure of the configurational entropy of the same. We find that, under loose confinement of supercooled water, the entropy barrier surmounted by the slower probe fraction exceeds that of equilibrium water by the melting entropy of ice, whereas no increase of the barrier is observed under stronger confinement. The lower limit of metastability of supercooled water is discussed.
Resumo:
DNA three-way junctions (TWJs) are important intermediates in various cellular processes and are the simplest of a family of branched nucleic acids being considered as scaffolds for biomolecular nanotechnology. Branched nucleic acids are stabilized by divalent cations such as Mg2+, presumably due to condensation and neutralization of the negatively charged DNA backbone. However, electrostatic screening effects point to more complex solvation dynamics and a large role of interfacial waters in thermodynamic stability. Here, we report extensive computer simulations in explicit water and salt on a model TWJ and use free energy calculations to quantify the role of ionic character and strength on stability. We find that enthalpic stabilization of the first and second hydration shells by Mg2+ accounts for 1/3 and all of the free energy gain in 50% and pure MgCl2 solutions, respectively. The more distorted DNA molecule is actually destabilized in pure MgCl2 compared to pure NaCl. Notably, the first shell, interfacial waters have very low translational and rotational entropy (i.e., mobility) compared to the bulk, an entropic loss that is overcompensated by increased enthalpy from additional electrostatic interactions with Mg2+. In contrast, the second hydration shell has anomalously high entropy as it is trapped between an immobile and bulklike layer. The nonmonotonic entropic signature and long-range perturbations of the hydration shells to Mg2+ may have implications in the molecular recognition of these motifs. For example, we find that low salt stabilizes the parallel configuration of the three-way junction, whereas at normal salt we find antiparallel configurations deduced from the NMR. We use the 2PT analysis to follow the thermodynamics of this transition and find that the free energy barrier is dominated by entropic effects that result from the decreased surface area of the antiparallel form which has a smaller number of low entropy waters in the first monolayer.
Resumo:
A molecular dynamics simulation study of aqueous solution of LiCl is reported as a function of pressure. Experimental measurements of conductivity of Li+ ion as a function of pressure shows an increase in conductivity with pressure. Our simulations are able to reproduce the observed trend in conductivity. A number of relevant properties have been computed in order to understand the reasons for the increase in conductivity with pressure. These include radial distribution function, void and neck distributions, hydration or coordination numbers, diffusivity, velocity autocorrelation functions, angles between ion-oxygen and dipole of water as well as OH vector, mean residence time for water in the hydration shell, etc. These show that the increase in pressure acts as a structure breaker. The decay of the self part of the intermediate scattering function at small wave number k shows a bi-exponential decay at 1 bar which changes to single exponential decay at higher pressures. The k dependence of the ratio of the self part of the full width at half maximum of the dynamic structure factor to 2Dk(2) exhibits trends which suggest that the void structure of water is playing a role. These support the view that the changes in void and neck distributions in water can account for changes in conductivity or diffusivity of Li+ with pressure. These results can be understood in terms of the levitation effect. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4756909]
Resumo:
A new Cu(II)-picolinate complex was synthesized and characterized by single crystal X-ray crystallography. The complex crystallizes in the centrosymmetric triclinic space group P (1) over bar (no. 2). Picolinate in the complex extends the neutral unit into a 1-D chain through mu(2)-bridging carboxylate. The complex has a hydrogen bonding acceptor in the second coordination sphere allowing lattice water to assemble neighboring chains. Water self-assembles to form a zig-zag 1-D chain. The adjacent chains are assembled by C-H center dot center dot center dot O interactions result in the formation 2-D hydrogen bonded network. The overall hydrogen bonding between water chain and Cu-picolinate network yields a 3-D hydrogen bonded coordination network. X-ray structural analysis, FTIR and thermal analysis have been used to characterize the reported compound in the solid state.
Resumo:
Ce0.88Si0.1Pt0.02O2-d and Ce0.88Al0.1Pt0.02O2-d catalysts were synthesized by using a low-temperature sonochemical method and characterized by using XRD, TEM, XPS, FTIR, and BET surface analyzer. The catalytic activities of these compounds were investigated for the watergas shift reaction in the temperature range of 140-440 degrees C. The substitution of Si in Ce0.98Pt0.02O2-d increased the releasing capacity of lattice oxygen, whereas the substitution of Al decreased the reducibility of Ce0.98Pt0.02O2-d, as evidenced by hydrogen temperature-programmed reduction studies. However, both the catalysts showed a considerable improvement in terms of activity and stability compared to Ce0.98Pt0.02O2-d. The combined activity measurement and characterization results suggest that the increase in the oxygen vacancy, which acts as a dissociation center for water, is the primary reason for the improvement in the activity of modified Ce0.98Pt0.02O2-d. Both the catalysts are 100?% selective toward H2 production, and approximately 99?% conversion of CO to CO2 was observed at 260 and 270 degrees C for Ce0.88Si0.1Pt0.02O2-d and Ce0.88Al0.1Pt0.02O2-d, respectively. These catalysts do not deactivate during the daily startup/shutdown operations and are sustainable even after prolonged reaction. Notably, these catalysts do not require any pretreatment or activation during startup/shutdown operations.
Resumo:
A new bis-indolyl-based colorimetric probe has been synthesized. This allows a Michael-type adduct formation for the detection of cyanide ions. The probe shows a remarkable color change from red to colorless upon addition of the cyanide ions in pure water. The cyanide ion reacts with the probe and removes the conjugation of the bis-indolyl moiety of the probe with that of the 4-substituted aromatic ring. This renders the probe colorless. The mechanism of the reaction of the probe with the cyanide ion was established by using 1H and 13C NMR spectroscopy, mass spectrometry, and kinetic studies.
Resumo:
We investigate the effect of bilayer melting transition on thermodynamics and dynamics of interfacial water using molecular dynamics simulation with the two-phase thermodynamic model. We show that the diffusivity of interface water depicts a dynamic crossover at the chain melting transition following an Arrhenius behavior until the transition temperature. The corresponding change in the diffusion coefficient from the bulk to the interface water is comparable with experimental observations found recently for water near 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles Phys. Chem. Chem. Phys. 13, 7732 (2011)]. The entropy and potential energy of interfacial water show distinct changes at the bilayer melting transition, indicating a strong correlation in the thermodynamic state of water and the accompanying first-order phase transition of the bilayer membrane. DOI: 10.1103/PhysRevLett.110.018303
Resumo:
Recently nano scale zero valent iron particles (nZVI) have been considered as smart adsorbent for environmental and groundwater remediation. Although several synthetic methods are available for the preparation of nZVI, air stable nZVI are not available for remediation works. Further, challenges demand synthesis of nZVI without stabilizers and capping agents. A modified methodology for the synthesis of air stable nZVI has been developed without any capping agents and characterized by powder X-Ray Diffraction (XRD), Scanning Electron Microscopy Energy-dispersive X-Ray (SEM-EDS), Transmission Electron Microscopy (TEM) and X-Ray Photoelectron Spectroscopy (XPS). The results of the present study suggest that the synthetic nZVI are air-stable over a period of one year and consists of particles of 30-40 nm in diameter. Although a layer of less than 3 am thick oxide/hydroxide is observed by TEM and XPS, it appears to be due to oxidation of outer surface during analysis. Adsorption study has shown that the synthetic nZVI are more effective adsorbent than the commercial nZVI and can remove simultaneously arsenite As-III] and arsenate As-V] from water without prior reduction of As-V to As-III. The removal process is adsorptive rather than precipitative and the removal of As-III is greater than that of As-V.
Resumo:
Artificial Neural Networks (ANNs) have been found to be a robust tool to model many non-linear hydrological processes. The present study aims at evaluating the performance of ANN in simulating and predicting ground water levels in the uplands of a tropical coastal riparian wetland. The study involves comparison of two network architectures, Feed Forward Neural Network (FFNN) and Recurrent Neural Network (RNN) trained under five algorithms namely Levenberg Marquardt algorithm, Resilient Back propagation algorithm, BFGS Quasi Newton algorithm, Scaled Conjugate Gradient algorithm, and Fletcher Reeves Conjugate Gradient algorithm by simulating the water levels in a well in the study area. The study is analyzed in two cases-one with four inputs to the networks and two with eight inputs to the networks. The two networks-five algorithms in both the cases are compared to determine the best performing combination that could simulate and predict the process satisfactorily. Ad Hoc (Trial and Error) method is followed in optimizing network structure in all cases. On the whole, it is noticed from the results that the Artificial Neural Networks have simulated and predicted the water levels in the well with fair accuracy. This is evident from low values of Normalized Root Mean Square Error and Relative Root Mean Square Error and high values of Nash-Sutcliffe Efficiency Index and Correlation Coefficient (which are taken as the performance measures to calibrate the networks) calculated after the analysis. On comparison of ground water levels predicted with those at the observation well, FFNN trained with Fletcher Reeves Conjugate Gradient algorithm taken four inputs has outperformed all other combinations.
Resumo:
The Hooghly River estuary provides a unique experimental site to understand the effect of monsoonal river discharge on freshwater and seawater mixing. Water samples collected bi-weekly for a duration of 17 months were analyzed for salinity, delta O-18,delta C-13(DIC), as well as delta D to investigate the differential mixing of freshwater and seawater. The differences in salinity and delta O-18 of samples collected during low and high tides on the same day are strongly correlated suggesting a well mixed water column at our sampling site. Low salinity and depleted delta O-18 during monsoon is consistent with increased river discharge as well as high rainfall. We identified different slopes in a delta O-18 versus salinity plot for the estuary water samples collected during monsoon and non-monsoon seasons. This is driven by composition of the freshwater source which is dominated by rainwater during monsoon and rivers during non-monsoon months. Selected delta D analyses of samples indicate that groundwater contributes significantly to the Hooghly Estuary during low rainfall times of the year. delta C-13(DIC) measured in the water recorded low values towards the end of monsoon indicating low productivity (i.e. increased organic respiration) while progressively increasing delta C-13(DIC) values from October till January as well as during some of the pre-monsoon months can be explained by increasing productivity. Very low delta C-13(DIC) (similar to-20%0) suggests involvement of carbon derived from anaerobic oxidation of organics and/or methane with potential contribution from increased anthropogenic water supply. An estimate of seawater incursion into the Hooghly Estuary at different times of the year is obtained by using salinity data in a two-component mixing model. Presence of seawater was found maximum (31-37%) during February till July and lowest (less than or equal to 6%) from September till November. We notice a temporal offset between Ganges River discharge farther upstream at Farakka and salinity variation at the Hooghly Estuary. We believe that this time lag is a result of the physical distance between Farakka and Kakdweep (our sampling location) and put constraints on the travel time of river water during early monsoon. (c) 2012 Published by Elsevier B.V.
Resumo:
We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalysts towards the CO oxidation and water gas shift (VMS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H-2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H-2, nearly 100% conversion of CO to CO2 with 100% H-2 selectivity was observed at 300 degrees C and 260 degrees C respectively, for Ti0.84Pt0.01Fe0.15O2-delta and Ti0.73Pd0.02Fe0.25O2-delta catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2-delta deteriorates in the presence of feed CO2 and H-2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2-delta than Ti0.84Pt0.01Fe0.15O2-delta. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the ldnetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Nanostructured Pd-modified Ni/CeO2 catalyst was synthesized in a single step by solution combustion method and characterized by XRD, TEM, XPS, TPR and BET surface analyzer techniques. The catalytic performance of this compound was investigated by performing the water gas shift (WGS) and catalytic hydrogen combustion (CHC) reaction. The present compound is highly active and selective (100%) toward H-2 production for the WGS reaction. A lack of CO methanation activity is an important finding of present study and this is attributed to the ionic substitution of Pd and Ni species in CeO2. The creation of oxide vacancies due to ionic substitution of aliovalent ions induces dissociation of H2O that is responsible for the improved catalytic activity for WGS reaction. The combined H-2-TPR and XPS results show a synergism exists among Pd, Ni and ceria support. The redox reaction mechanism was used to correlate experimental data for the WGS reaction and a mechanism involving the interaction of adsorbed H-2 and O-2 through the hydroxyl species was proposed for CHC reaction. The parity plot shows a good correspondence between the experimental and predicted reaction rates. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Urban water bodies frequently receive untreated sewage and water levels in such water bodies are maintained by daily inputs of sewage. They function as “variable-zone” anaerobic-aerobic lagoons suffering several macrophyte, biotic and abiotic stresses. We have studied two such lakes in Bangalore (Bellandur-360 ha and Varthur-220 ha) to understand whether such an occurrence could be made beneficial (maintaining water levels as well as treatment). Such hypertrophic water body receives sewage at 180-250mg/L and is discharged at 25-80mg/L COD/BOD in different seasons. In an earlier study we reported macrophyte altering the purification function of the water body. In this paper we studied the impact of phytoplankton dynamics and macrophyte cover on the functions such as organic load removal. Algal community analysis, algal biomass, macrophyte cover, water quality, nutrient status was studied seasonally during 2009-2010. Oxygen deficiency and sometimes anoxia, recorded from surface samples resulted in high quantities of NH4+-N (30-40mg/L) and phosphate (0.5-4mg/L)-characteristics of anoxic hypertrophic urban lakes. The productiveness favoured high phytoplanktonic community characterized by small cells (<10μm; Chlorella sp. - highest numbers). The lake could be clearly demarcated into an initial anaerobic zone (40% area), a facultative zone (20%) and an aerobic zone (40%) based on redox values and GIS/bathymetry. During summer the lake is covered by floating macrophytes converting the lake into an anoxic/anaerobic water pool subduing the water purification function as well as aesthetics. When macrophytes are controlled such sewage fed water bodies can be used for treating urban wastewater while also maintaining water sustainability in these semi-arid ecosystems. This paper reports the community dynamics of phytoplankton, their function and competition with macrophytes.