955 resultados para Water conservation
Resumo:
Unstable density-driven flow can lead to enhanced solute transport in groundwater. Only recently has the complex fingering pattern associated with free convection been documented in field settings. Electrical resistivity (ER) tomography has been used to capture a snapshot of convective instabilities at a single point in time, but a thorough transient analysis is still lacking in the literature. We present the results of a 2 year experimental study at a shallow aquifer in the United Arab Emirates that was designed to specifically explore the transient nature of free convection. ER tomography data documented the presence of convective fingers following a significant rainfall event. We demonstrate that the complex fingering pattern had completely disappeared a year after the rainfall event. The observation is supported by an analysis of the aquifer halite budget and hydrodynamic modeling of the transient character of the fingering instabilities. Modeling results show that the transient dynamics of the gravitational instabilities (their initial development, infiltration into the underlying lower-density groundwater, and subsequent decay) are in agreement with the timing observed in the time-lapse ER measurements. All experimental observations and modeling results are consistent with the hypothesis that a dense brine that infiltrated into the aquifer from a surficial source was the cause of free convection at this site, and that the finite nature of the dense brine source and dispersive mixing led to the decay of instabilities with time. This study highlights the importance of the transience of free convection phenomena and suggests that these processes are more rapid than was previously understood.
Resumo:
Brisbane City Hall (BCH) is arguably one of Brisbane’s most notable and iconic buildings. Serving as the public’s central civic and municipal building since 1930, the importance of this heritage listed building to cultural significance and identity is unquestionable. This attribute is reflected within the local government, with a simplified image of the halls main portico entrance supplying Brisbane City Council with its insignia and trademark signifier. Regardless of these qualities, this building has been neglected in a number of ways, primarily in the physical sense with built materials, but also, and just as importantly, through inaccurate and undocumented works. Numerous restoration and renovation works have been undertaken throughout BCH’s lifetime, however the records of these amendments are far and few between. Between 2010 and 2013, BCH underwent major restoration works, the largest production project undertaken on the building since its initial construction. Just prior to this conservation process, the full extent of the buildings deterioration was identified, much of which there was little to no original documentation of. This has led to a number of issues pertaining to what investigators expected to find within the building, versus what was uncovered (the unexpected), which have resulted directly from this lack of data. This absence of record keeping is the key factor that has contributed to the decay and unknown deficiencies that had amassed within BCH. Accordingly, this raises a debate about the methods of record keeping, and the need for a more advanced process that is able to be integrated within architectural and engineering programs, whilst still maintaining the ability to act as a standalone database. The immediate objective of this research is to investigate the restoration process of BCH, with focus on the auditorium, to evaluate possible strategies to record and manage data connected to building pathology so that a framework can be developed for a digital heritage management system. The framework produced for this digital tool will enable dynamic uses of a centralised database and aims to reduce the significant data loss. Following an in-depth analysis of this framework, it can be concluded that the implementation of the suggested digital tool would directly benefit BCH, and could ultimately be incorporated into a number of heritage related built form.
Resumo:
Background Flower development in kiwifruit (Actinidia spp.) is initiated in the first growing season, when undifferentiated primordia are established in latent shoot buds. These primordia can differentiate into flowers in the second growing season, after the winter dormancy period and upon accumulation of adequate winter chilling. Kiwifruit is an important horticultural crop, yet little is known about the molecular regulation of flower development. Results To study kiwifruit flower development, nine MADS-box genes were identified and functionally characterized. Protein sequence alignment, phenotypes obtained upon overexpression in Arabidopsis and expression patterns suggest that the identified genes are required for floral meristem and floral organ specification. Their role during budbreak and flower development was studied. A spontaneous kiwifruit mutant was utilized to correlate the extended expression domains of these flowering genes with abnormal floral development. Conclusions This study provides a description of flower development in kiwifruit at the molecular level. It has identified markers for flower development, and candidates for manipulation of kiwifruit growth, phase change and time of flowering. The expression in normal and aberrant flowers provided a model for kiwifruit flower development.
Resumo:
This research has developed an innovative road safety barrier system that will enhance roadside safety. In doing so, the research developed new knowledge in the field of road crash mitigation for high speed vehicle impact involving plastic road safety barriers. This road safety barrier system has the required feature to redirecting an errant vehicle with limited lateral displacement. Research was carried out using dynamic computer simulation technique support by experimental testing. Future road safety barrier designers may use the information in this research as a design guideline to improve the performance and redirectional capability of the road safety barrier system. This will lead to better safety conditions on the roadways and potentially save lives.
Resumo:
Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement and vehicle redirectionality. Actual PWFB test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many was done pertaining to PWFB. This research probes a new technique to model joints in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.
Resumo:
Portable water-filled barriers (PWFBs) are roadside appurtenances that are used to prevent errant vehicles from penetrating into temporary construction zones on roadways. A numerical model of the composite PWFB, consisting of a plastic shell, steel frame, water and foam was developed and validated against results from full scale experimental tests. This model can be extended to larger scale impact cases, specifically ones that include actual vehicle models. The cost-benefit of having a validated numerical model is significant and this allows the road barrier designer to conduct extensive tests via numerical simulations prior to standard impact tests Effects of foam cladding as additional energy absorption material in the PWFB was investigated. Different types of foam were treated and it was found that XPS foam was the most suitable foam type. Results from this study will aid PWFB designers in developing new generation of roadside structures which will provide enhanced road safety.
Resumo:
Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular “wall” representative of a 30 m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier “wall” and the vehicle was obtained and the results show that a rotational stiffness of 3000 kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety.
Resumo:
MADS-box genes similar to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been implicated in the regulation of flowering in annual species and bud dormancy in perennial species. Kiwifruit (Actinidia spp.) are woody perennial vines where bud dormancy and out-growth affect flower development. To determine the role of SVP-like genes in dormancy and flowering of kiwifruit, four MADS-box genes with homology to Arabidopsis SVP, designated SVP1, SVP2, SVP3, and SVP4, have been identified and analysed in kiwifruit and functionally characterized in Arabidopsis. Phylogenetic analysis indicate that these genes fall into different sub-clades within the SVP-like gene group, suggesting distinct functions. Expression was generally confined to vegetative tissues, and increased transcript accumulation in shoot buds over the winter period suggests a role for these genes in bud dormancy. Down-regulation before flower differentiation indicate possible roles as floral repressors. Over-expression and complementation studies in Arabidopsis resulted in a range of floral reversion phenotypes arising from interactions with Arabidopsis MADS-box proteins, but only SVP1 and SVP3 were able to complement the svp mutant. These results suggest that the kiwifruit SVP-like genes may have distinct roles during bud dormancy and flowering.
Resumo:
The extraction of coal seam gas (CSG) produces large volumes of potentially contaminated water. It has raised concerns about the environmental health impacts of the co-produced CSG water. In this paper, we review CSG water contaminants and their potential health effects in the context of exposure pathways in Queensland’s CSG basins. The hazardous substances associated with CSG water in Queensland include fluoride, boron, lead and benzene. The exposure pathways for CSG water are: (1) water used for municipal purposes, (2) recreational water activities in rivers, (3) occupational exposures, (4) water extracted from contaminated aquifers, and; (5) indirect exposure through the food chain. We recommend mapping of exposure pathways into communities in CSG regions to determine the potentially exposed populations in Queensland. Future efforts to monitor chemicals of concern and consolidate them into a central database will build the necessary capability to undertake a much needed environmental health impact assessment.
Resumo:
This project was a step forward in developing the scientific basis for a methodology to assess the resilience of water supply systems under the impacts of climate change. The improved measure of resilience developed in this project provides an approach to assess the ability of water supply systems to absorb the pressure due changing climate while sustaining supply, and their speed of recovery in case of failure. The approach developed can be applied to any generic water supply system.
Resumo:
This chapter investigates a variety of water quality assessment tools for reservoirs with balanced/unbalanced monitoring designs and focuses on providing informative water quality assessments to ensure decision-makers are able to make risk-informed management decisions about reservoir health. In particular, two water quality assessment methods are described: non-compliance (probability of the number of times the indicator exceeds the recommended guideline) and amplitude (degree of departure from the guideline). Strengths and weaknesses of current and alternative water quality methods will be discussed. The proposed methodology is particularly applicable to unbalanced designs with/without missing values and reflects the general conditions and is not swayed too heavily by the occasional extreme value (very high or very low quality). To investigate the issues in greater detail, we use as a case study, a reservoir within South-East Queensland (SEQ), Australia. The purpose here is to obtain an annual score that reflected the overall water quality, temporally, spatially and across water quality indicators for each reservoir.
Resumo:
Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.
Resumo:
Water management is vital for mine sites both for production and sustainability related issues. Effective water management is a complex task since the role of water on mine sites is multifaceted. Computers models are tools that represent mine site water interaction and can be used by mine sites to inform or evaluate their water management strategies. There exist several types of models that can be used to represent mine site water interactions. This paper presents three such models: an operational model, an aggregated systems model and a generic systems model. For each model the paper provides a description and example followed by an analysis of its advantages and disadvantages. The paper hypotheses that since no model is optimal for all situations, each model should be applied in situations where it is most appropriate based upon the scale of water interactions being investigated, either unit (operation), inter-site (aggregated systems) or intra-site (generic systems).
Resumo:
Even when no baseline data are available, the impacts of 150 years of livestock grazing on natural grasslands can be assessed using a combined approach of grazing manipulation and regional-scale assessment of the flora. Here, we demonstrate the efficacy of this method across 18 sites in the semidesert Mitchell grasslands of northeastern Australia. Fifteen-year-old exclosures (ungrazed and macropod grazed) revealed that the dominant perennial grasses in the genus Astrebla do not respond negatively to grazing disturbance typical of commercial pastoralism. Neutral, positive, intermediate, and negative responses to grazing disturbance were recorded amongst plant species with no single life-form group associated with any response type. Only one exotic species, Cenchrus ciliaris, was recorded at low frequency. The strongest negative response was from a native annual grass, Chionachne hubbardiana, an example of a species that is highly sensitive to grazing disturbance. Herbarium records revealed only scant evidence that species with a negative response to grazing have declined through the period of commercial pastoralism. A regional analysis identified 14 from a total of 433 plant species in the regional flora that may be rare and potentially threatened by grazing disturbance. However, a targeted survey precluded grazing as a cause of decline for seven of these based on low palatability and positive responses to grazing and other disturbance. Our findings suggest that livestock grazing of semidesert grasslands with a short evolutionary history of ungulate grazing has altered plant composition, but has not caused declines in the dominant perennial grasses or in species richness as predicted by the preceding literature. The biggest impact of commercial pastoralism is the spread of woody leguminous trees that can transform grassland to thorny shrubland. The conservation of plant biodiversity is largely compatible with commercial pastoralism provided these woody weeds are controlled, but reserves strategically positioned within water remote areas are necessary to protect grazing-sensitive species. This study demonstrates that a combination of experimental studies and regional surveys can be used to understand anthropogenic impacts on natural ecosystems where reference habitat is not available.
Resumo:
This project provides a costed and appraised set of management strategies for mitigating threats to species of conservation significance in the Pilbara IBRA bioregion of Western Australia (hereafter 'the Pilbara'). Conservation significant species are either listed under federal and state legislation, international agreements or considered likely to be threatened in the next 20 years. Here we report on the 17 technically and socially feasible management strategies, which were drawn from the collective experience and knowledge of 49 experts and stakeholders in the ecology and management of the Pilbara region. We determine the relative ecological cost-effectiveness of each strategy, calculated as the expected benefit of management to the persistence of 53 key threatened native fauna and flora species, divided by the expected cost of management. Finally we provide decision support to assist prioritisation of the strategies on the basis of ecological cost-effectiveness.