969 resultados para Water barrier properties
Resumo:
The dielectric properties of pharmaceutical powder-(paracetamol, aspirin, lactose, maize starch, adipic acid) solvent (water) mixtures were measured at 2,450 MHz at a range of moisture contents (0-1.0 kg kg(-1), dry basis) and temperatures (20-70 A degrees C). The dielectric constant (epsilon'), loss factor (epsilon aEuro(3)) and penetration depth (d (p)) were found to be dependent on frequency, moisture content, temperature and powder type. For powder-water mixtures, a linear increase in the dielectric properties with moisture content was observed, whilst the temperature dependence was of quadratic form. The penetration depth was also significantly affected by temperature and moisture content. Although, epsilon aEuro(3) also increased with increasing temperature, variation with moisture content was temperature dependent. This information on dielectric properties is essential for mathematical description of the pharmaceutical product temperature history during microwave heating and for the design of microwave drying equipment.
Resumo:
Thecamoebians were examined from 123 surface sediment samples collected from 45 lakes in the Greater Toronto Area (GTA) and the surrounding region to i) elucidate the controls on faunal distribution in modern lake environments; and ii) to consider the utility of thecamoebians in quantitative studies of water quality change. This area was chosen because it includes a high density of lakes that are threatened by urban development and where water quality has deteriorated locally as a result of contaminant inputs, particularly nutrients. Canonical Correspondence analysis (CCA) and a series of partial CCAs were used to examine species-environment relationships. Twenty-four environmental variables were considered, including water properties (e.g. pH, DO, conductivity), substrate characteristics, nutrient loading, and environmentally available metals. The thecamoebian assemblages showed a strong association with Olsen's Phosphorus, reflecting the eutrophic status of many of the lakes, and locally to elevated conductivity measurements, which appear to reflect road salt inputs associated with winter de-icing operations. A transfer function was developed for Olsen P using this training set based on weighted averaging with inverse deshrinking (WA Inv). The model was applied to infer past changes in Phosphorus enrichment in core samples from several lakes, including eutrophic Haynes Lake within the GTA. Thecamoebian-inferred changes in sedimentary Phosphorus from a 210Pb dated core from Haynes Lake are related to i) widespread introduction of chemical fertilizers to agricultural land in the post WWII era; ii) a steep decline in Phosphorous with a change in agricultural practices in the late 1970s; and iii) the construction of a golf course in close proximity to the lake in the early 1990s. This preliminary study confirms that thecamoebians have considerable potential as indicators of eutrophication in lakes and can provide an estimate of baseline conditions.
Resumo:
The transport properties (adsorption and aggregation behavior) of virus-like particles (VLPs) of two strains of norovirus ("Norwalk" GI.1 and "Houston" GII.4) were studied in a variety of solution chemistries. GI.1 and GII.4 VLPs were found to be stable against aggregation at pH 4.0-8.0. At pH 9.0, GI.1 VLPs rapidly disintegrated. The attachment efficiencies (a) of GI.1 and GII.4 VLPs to silica increased with increasing ionic strength in NaCl solutions at pH 8.0. The attachment efficiency of GI.1 VLPs decreased as pH was increased above the isoelectric point (pH 5.0), whereas at and below the isoelectric point, the attachment efficiency was erratic. Ca(2+) and Mg(2+) dramatically increased the attachment efficiencies of GI.1 and GII.4 VLPs, which may be due to specific interactions with the VLP capsids. Bicarbonate decreased attachment efficiencies for both GI.1 and GII.4 VLPs, whereas phosphate decreased the attachment efficiency of GI.1, while increasing GII.4 attachment efficiency. The observed differences in GI.1 and GII.4 VLP attachment efficiencies in response to solution chemistry may be attributed to differential responses of the unique arrangement of exposed amino acid residues on the capsid surface of each VLP strain.
Resumo:
The study of interrelationships between soil structure and its functional properties is complicated by the fact that the quantitative description of soil structure is challenging. Soil scientists have tackled this challenge by taking advantage of approaches such as fractal geometry, which describes soil architectural complexity through a scaling exponent (D) relating mass and numbers of particles/aggregates to particle/aggregate size. Typically, soil biologists use empirical indices such as mean weight diameters (MWD) and percent of water stable aggregates (WSA), or the entire size distribution, and they have successfully related these indices to key soil features such as C and N dynamics and biological promoters of soil structure. Here, we focused on D, WSA and MWD and we tested whether: D estimated by the exponent of the power law of number-size distributions is a good and consistent correlate of MWD and WSA; D carries information that differs from MWD and WSA; the fraction of variation in D that is uncorrelated with MWD and WSA is related to soil chemical and biological properties that are thought to establish interdependence with soil structure (e.g., organic C, N, arbuscular mycorrhizal fungi). We analysed observational data from a broad scale field study and results from a greenhouse experiment where arbuscular mycorrhizal fungi (AMF) and collembola altered soil structure. We were able to develop empirical models that account for a highly significant and large portion of the correlation observed between WSA and MWD but we did not uncover the mechanisms that underlie this correlation. We conclude that most of the covariance between D and soil biotic (AMF, plant roots) and abiotic (C. N) properties can be accounted for by WSA and MWD. This result implies that the ecological effects of the fragmentation properties described by D and generally discussed under the framework of fractal models can be interpreted under the intuitive perspective of simpler indices and we suggest that the biotic components mostly impacted the largest size fractions, which dominate MWD, WSA and the scaling exponent ruling number-size distributions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Nutrient loss from agricultural land following organic fertilizer spreading can lead to eutrophication and poor water quality. The risk of pollution is partly related to the soil water status during and after spreading. In response to these issues, a decision support system (DSS) for nutrient management has been developed to predict when soil and weather conditions are suitable for slurry spreading. At the core of the DSS, the Hybrid Soil Moisture Deficit (HSMD) model estimates soil water status relative to field capacity (FC) for three soil classes (well, moderately and poorly drained) and has potential to predict the occurrence of a transport vector when the soil is wetter than FC. Three years of field observation of volumetric water content was used to validate HSMD model predictions of water status and to ensure correct use and interpretation of the drainage classes. Point HSMD model predictions were validated with respect to the temporal and spatial variations in volumetric water content and soil strength properties. It was found that the HSMD model predictions were well related to topsoil water content through time, but a new class intermediate between poor and moderate, perhaps ‘imperfectly drained’, was needed. With correct allocations of a field into a drainage class, the HSMD model predictions reflect field scale trends in water status and therefore the model is suitable for use at the core of a DSS.
Resumo:
The knowledge of the chemical stability as a function of the temperature of ionic liquids (ILs) in the presence of other molecules such as water is crucial prior to developing any no GO industrial application and process involving these novel materials. Fluid phase equilibria and density over a large range of temperature and composition can give basic information on IL purity and chemical stability. The IL scientific community requires accurate measurements accessed from reference data. In this work, the stability of different alkyl sulfate-based ILs in the presence of water and various alcohols (methanol, ethanol, 1-butanol, and 1-octanol) was investigated to understand their stability as a function of temperature up to 423.15 K over the hydrolysis and transesterification reactions, respectively. From this investigation, it was clear that methyl sulfate- and ethyl sulfate-based ILs are not stable in the presence of water, since hydrolysis of the methyl sulfate or ethyl sulfate anions to methanol or ethanol and hydrogenate anion is undoubtedly observed. Such observations could help to explain the differences observed for the physical properties published in the literature by various groups. Furthermore, it appears that a thermodynamic equilibrium process drives these hydrolysis reactions. In other words, these hydrolysis reactions are in fact reversible, providing the possibility to re-form the desired alkyl sulfate anions by a simple transesterification reaction between hydrogen sulfate-based ILs and the corresponding alcohol (methanol or ethanol). Additionally, butyl sulfate- and octyl sulfate-based ILs appear to follow this pattern but under more drastic conditions. In these systems, hydrolysis is observed in both cases after several months for temperatures up to 423 K in the presence of water. Therein, the partial miscibility of hydrogen sulfate-based ILs with long chain alcohols (1-butanol and 1-octanol) can help to explain the enhanced hydrolytic stability of the butyl sulfate- and octyl sulfate-based ILs compared with the methyl or ethyl sulfate systems. Additionally, rapid transesterification reactions are observed during liquid-liquid equilibrium studies as a function of temperature for binary systems of (hydrogen sulfate-based ionic liquids + 1-butanol) and of (hydrogen sulfate-based ionic liquids + 1-octanol). Finally, this atom-efficient catalyst-free transesterification reaction between hydrogen sulfate-based ILs and alcohol was then tested to provide a novel way to synthesize new ILs with various anion structures containing the alkyl sulfate group.
Resumo:
Densities, rho, of aqueous solutions of the room temperature protic ionic liquid (PIL), pyrrolidinium nitrate are determined at the atmospheric pressure over the temperature range from (283.15 to 323.15) K and within the whole composition range. The molar isobaric heat capacities, C(p), and refractive index, n(D), of {PIL + water} binary system are measured at 298.15 K. The excess molar volumes V(E), excess molar isobaric heat capacities C(p)(E), and deviation from ideality of refractive index Delta(phi)n, of pyrrolidinium nitrate aqueous solutions were deduced from the experimental results as well as apparent molar volumes V(phi), partial molar volumes (V) over bar (m,i), and thermal expansion coefficients alpha(p). The V(E) values were found to be positive over the entire composition range at all temperatures studied therein, whereas deviations from ideality were negative for refractive index Delta(phi)n. The volumetric properties of binary mixtures containing water and four other protic ionic liquids, such as pyrrolidinium hydrogen sulfate, pyrrolidinium formiate, collidinium formate, and diisopropyl-ethylammonium formate were also determined at 298.15 K. Results have been then discussed in terms of molecular interactions and molecular structures in these binary mixtures. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The structural interactions of biological macromolecules, their biochemical activities and, ultimately, the metabolic function of cellular systems are dependent upon weak inter- and intra-molecular forces such as hydrogen bonds, Van der Waals forces, and the hydrophobic effect. Water molecules, and those of hydrophobic substances such as hydrocarbons, can take part in and/or modify these interactions and thereby determine the operational and structural stability of the microbial cell and its macromolecular systems. We explain how the cytosol, plasma membrane and the extracellular solution form a material and energetic continuum; and discuss the behavior of hydrophobic substances of extracellular origin as they migrate into the plasma membrane and into the cell's interior. The adverse effects of substances with a log P octanol-water =2, that partition into the hydrophobic domains of biological macromolecules, are discussed in relation to microbial cell function; and we speculate whether the cellular stress that they induce is symmetrical or asymmetrical in nature. In the context of the microbial environment, we take a situational-functional approach to consider how hydrophobic stressors interact with the microbial cell, and what types of evasion tactics microbes can employ to minimize their inhibitory activities. Finally, we discuss the ecological implications of hydrocarbon-induced cellular stress for microbial systems.
Resumo:
This paper descirbes a simple test measuring the sorptivity (a measure of the absorption property if concrete) and the air and water permeability of concrete on site. Using this test, the decay of pressure is monitired for the air permeability test.whereas water penetrating into the concrete at a constant pressure of 0.01 bar and 1.5 bar are recorded for the sorptivity and the water permeability tests respectively. These tests are essentially non-destructive in nature and a skilled operator is not needed. It is possible to carry out a number of tests quickly and efficiently on site without prior planning. It has been found that statistically satisfactory results can be obtained from a mean of three tests. As the flow lines are largely concentrated within 40 mm from the surface, reasonably reliable results can be obtained by drying the surface even if the surface under test is initially wet.
Resumo:
There has been much debate in the literature over the past 60 years regarding an appropriate oven-drying temperature for water content determinations in peat and other organic soils. For inorganic soils, the water content is usually based on the equilibrium dry mass corresponding to drying temperatures in the range 100-110°C. However, for peat and other organic soils, several researchers have recommended lower drying temperatures in the range 60-90°C in an attempt to prevent possible charring, oxidation, and/or vaporization of substances other than pore water. However, all of the relevant water is not fully evaporated at too low a temperature, and because specimen dry mass is a function of drying temperature, the resulting water content values are lower than those determined for the temperature range 100-110°C. Experimental data reported in this article show that oven drying of peat and other organic soils at 100-110°C using either gravity-convection or forced-draft ovens is acceptable for routine water content determinations. Because a standardized oven temperature is desirable when correlating water content with other material properties, it is recommended that oven drying of peat and other organic soils be performed over temperature ranges of either 105-110°C or 105 ± 5°C, in line with standardized ranges for inorganic soils. © 2014 Copyright Taylor & Francis Group, LLC.
Resumo:
We describe, for the first time, quantification of in-skin swelling and fluid uptake by hydrogel-forming microneedle (MN) arrays and skin barrier recovery in human volunteers. Such MN arrays, prepared from aqueous blends of hydrolyzed poly(methylvinylether/maleic anhydride) (15%, w/w) and the cross-linker poly(ethyleneglycol) 10,000 Da (7.5%, w/w), were inserted into the skin of human volunteers (n = 15) to depths of approximately 300 μm by gentle hand pressure. The MN arrays swelled in skin, taking up skin interstitial fluid, such that their mass had increased by approximately 30% after 6 h in skin. Importantly, however, skin barrier function recovered within 24 h after MN removal, regardless of how long the MN had been in skin or how much their volume had increased with swelling. Further research on closure of MN-induced micropores is required because transepidermal water loss measurements suggested micropore closure, whereas optical coherence tomography indicated that MN-induced micropores had not closed over, even 24 h after MN had been removed. There were no complaints of skin reactions, adverse events, or strong views against MN use by any of the volunteers. Only some minor erythema was noted after patch removal, although this always resolved within 48 h, and no adverse events were present on follow-up.
Resumo:
Late Pleistocene to Holocene margin sedimentation on the Great Barrier Reef, a mixed carbonatesiliciclastic margin, has been explained by a transgressive shedding model. This model has challenged widely accepted sequence stratigraphic models in terms of the timing and type of sediment (i.e. carbonate vs. siliciclastic) deposited during sea-level oscillations. However, this model documents only hemipelagic sedimentation and the contribution of coarse-grained turbidite deposition, and the role of submarine canyons in this process, remain elusive on this archetypal margin. Here we present a new model of turbidite deposition for the last 60 ky in the north-eastern Australia margin. Using highresolution bathymetry, 58 new and existing radiometric ages, and the composition of 81 turbidites from 15 piston cores, we found that the spatial and temporal variation of turbidites is controlled by the relationship between sea-level change and the variable physiography along the margin. Siliciclastic and mixed carbonate-siliciclastic turbidites were linked to canyons indenting the shelf-break and the welldeveloped shelf-edge reef barriers that stored sediment behind them. Turbidite deposition was sustained while the sea-level position allowed the connection and sediment bypassing through the interreef passages and canyons. Carbonate turbidites dominated in regions with more open conditions at the outer-shelf and where slope-confined canyons dominated or where canyons are generally less abundant. The turn-on and maintenance of carbonate production during sea-level fluctuations also influenced the timing of carbonate turbidite deposition. We show that a fundamental understanding of the variable physiography inherent to mixed carbonate-siliciclastic margins is essential to accurately interpret deep-water, coarse-grained deposition within a sequence stratigraphic context.
Resumo:
Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A'-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.
Resumo:
Thermal barrier coatings (TBCs) are widely adopted to protect mechanical components in gas turbine engines operating at high temperature. Basically, the surface temperature of these components must be low enough to retain material properties within acceptable bounds and to extend component life. From this standpoint, air plasma-sprayed (APS) ceria and yttria co-stabilized zirconia (CYSZ) is particularly promising because it provides enhanced thermal insulation capabilities and resistance to hot corrosion. However, essential mechanical properties, such as hardness and Young's modulus, have been less thoroughly investigated. Knowledge of Young's modulus is of concern because it has a significant effect on strain tolerance and stress level and, hence, on durability. The focus of the present study was to determine the mechanical properties of APS CYSZ coatings. In particular, X-ray diffraction (XRD) is adopted for phase analysis of powders and as-sprayed coatings. In addition, scanning electron microscopy (SEM) and image analysis (IA) are employed to explore coating microstructure and porosity. Finally, the Young's modulus of the coating is determined using nanoindentation and a resonant method. The results obtained are then discussed and a cross-check on their consistency is carried out by resorting to a micromechanical model. © 2010 Blackwell Publishing Ltd.
Resumo:
Understanding the response of humid mid-latitude forests to changes in precipitation, temperature, nutrient cycling, and disturbance is critical to improving our predictive understanding of changes in the surface-subsurface energy balance due to climate change. Mechanistic understanding of the effects of long-term and transient moisture conditions are needed to quantify
linkages between changing redox conditions, microbial activity, and soil mineral and nutrient interactions on C cycling and greenhouse gas releases. To illuminate relationships between the soil chemistry, microbial communities and organic C we established transects across hydraulic and topographic gradients in a small watershed with transient moisture conditions. Valley bottoms tend to be more frequently saturated than ridge tops and side slopes which generally are only saturated when shallow storm flow zones are active. Fifty shallow (~36”) soil cores were collected during timeframes representative of low CO2, soil winter conditions and high CO2, soil summer conditions. Cores were subdivided into 240 samples based on pedology and analyses of the geochemical (moisture content, metals, pH, Fe species, N, C, CEC, AEC) and microbial (16S rRNA gene
amplification with Illumina MiSeq sequencing) characteristics were conducted and correlated to watershed terrain and hydrology. To associate microbial metabolic activity with greenhouse gas emissions we installed 17 soil gas probes, collected gas samples for 16 months and analyzed them for CO2 and other fixed and greenhouse gasses. Parallel to the experimental efforts our data is being used to support hydrobiogeochemical process modeling by coupling the Community Land Model (CLM) with a subsurface process model (PFLOTRAN) to simulate processes and interactions from the molecular to watershed scales. Including above ground processes (biogeophysics, hydrology, and vegetation dynamics), CLM provides mechanistic water, energy, and organic matter inputs to the surface/subsurface models, in which coupled biogeochemical reaction
networks are used to improve the representation of below-ground processes. Preliminary results suggest that inclusion of above ground processes from CLM greatly improves the prediction of moisture response and water cycle at the watershed scale.