982 resultados para Washington Canal (Washington, D.C.)--Maps, Manuscript.
Resumo:
Relevant Education Contexts, Examples of TCQSM Applicability to Undergraduate Disciplines, Why Teach with the TCQSM?, TCQS Teaching Tools, Theory Curriculum Example: Examination Question, Problem Based Learning Example: Senior Year Semester Team Project, Honors Dissertation Example Topics, Where to From Here?
Resumo:
This paper investigates: - correlation between transit route passenger loading and travel distance - its implications on quality of service (QoS) and resource productivity. It uses Automatic Fare Collection (AFC) data across a weekday on a premium bus line in Brisbane, Australia. A composite load-distance factor is proposed as a new measure for profiling transit route on-board passenger comfort QoS. Understanding these measures and their correlation is important for planning, design, and operational activities.
Resumo:
The Macroscopic Fundamental Diagram (MFD) relates space-mean density and flow, and the existence with dynamic features was confirmed in congested urban network in downtown Yokohama with real data set. Since the MFD represents the area-wide network traffic performances, studies on perimeter control strategies and an area traffic state estimation utilizing the MFD concept has been reported. However, limited works have been reported on real world example from signalised arterial network. This paper fuses data from multiple sources (Bluetooth, Loops and Signals) and develops a framework for the development of the MFD for Brisbane, Australia. Existence of the MFD in Brisbane arterial network is confirmed. Different MFDs (from whole network and several sub regions) are evaluated to discover the spatial partitioning in network performance representation. The findings confirmed the usefulness of appropriate network partitioning for traffic monitoring and incident detections. The discussion addressed future research directions
Resumo:
Public transport travel time variability (PTTV) is essential for understanding deteriorations in the reliability of travel time, optimizing transit schedules and route choices. This paper establishes key definitions of PTTV in which firstly include all buses, and secondly include only a single service from a bus route. The paper then analyses the day-to-day distribution of public transport travel time by using Transit Signal Priority data. A comprehensive approach using both parametric bootstrapping Kolmogorov-Smirnov test and Bayesian Information Creation technique is developed, recommends Lognormal distribution as the best descriptor of bus travel time on urban corridors. The probability density function of Lognormal distribution is finally used for calculating probability indicators of PTTV. The findings of this study are useful for both traffic managers and statisticians for planning and researching the transit systems.
Resumo:
Transit passenger market segmentation enables transit operators to target different classes of transit users to provide customized information and services. The Smart Card (SC) data, from Automated Fare Collection system, facilitates the understanding of multiday travel regularity of transit passengers, and can be used to segment them into identifiable classes of similar behaviors and needs. However, the use of SC data for market segmentation has attracted very limited attention in the literature. This paper proposes a novel methodology for mining spatial and temporal travel regularity from each individual passenger’s historical SC transactions and segments them into four segments of transit users. After reconstructing the travel itineraries from historical SC transactions, the paper adopts the Density-Based Spatial Clustering of Application with Noise (DBSCAN) algorithm to mine travel regularity of each SC user. The travel regularity is then used to segment SC users by an a priori market segmentation approach. The methodology proposed in this paper assists transit operators to understand their passengers and provide them oriented information and services.
Resumo:
Pilot cars are used in one-lane two-way work zones to guide traffic and keep their speeds within posted limits. While many studies have examined the effectiveness of measures to reduce vehicle speeds in work zones, little is known about the reductions achievable through the use of pilot cars. This paper examines the effectiveness of a pilot car in reducing travel speeds in a rural highway work zone in Queensland, Australia. Analysis of speed data covering a period of five days showed that a pilot car reduced average speeds at the treatment location, but not downstream. The proportion of vehicles speeding through the activity area was also reduced, particularly those traveling at 10 km/h or more above the posted limit. Motorists were more likely to speed during the day, under a 40 kh/h limit, when traffic volumes were higher and when there were fewer vehicles in the traffic stream. Medium vehicles were less likely to speed in the presence of a pilot car than light vehicles. To maximize these benefits, it is necessary to ensure that the pilot car itself is not speeding.
Resumo:
There are currently more than 400 cities operating bike share programs. Purported benefits of bike share programs include flexible mobility, physical activity, reduced congestion, emissions and fuel use. Implicit or explicit in the calculation of program benefits are assumptions regarding the modes of travel replaced by bike share journeys. This paper examines the degree to which car trips are replaced by bike share, through an examination of survey and trip data from bike share programs in Melbourne, Brisbane, Washing, D.C., London, and Minneapolis/St. Paul. A secondary and unique component of this analysis examines motor vehicle support services required for bike share fleet rebalancing and maintenance. These two components are then combined to estimate bike share’s overall contribution to changes in vehicle kilometres traveled. The results indicate that the estimated mean reduction in car use due to bike share is at least twice the distance covered by operator support vehicles, with the exception of London, in which the relationship is reversed, largely due to a low car mode substitution rate. As bike share programs mature, evaluation of their effectiveness in reducing car use may become increasingly important. This paper reveals that by increasing the convenience of bike share relative to car use and by improving perceptions of safety, the capacity of bike share programs to reduce vehicle trips and yield overall net benefits will be enhanced. Researchers can adapt the analytical approach proposed in this paper to assist in the evaluation of current and future bike share programs.
Resumo:
Fusion techniques can be used in biometrics to achieve higher accuracy. When biometric systems are in operation and the threat level changes, controlling the trade-off between detection error rates can reduce the impact of an attack. In a fused system, varying a single threshold does not allow this to be achieved, but systematic adjustment of a set of parameters does. In this paper, fused decisions from a multi-part, multi-sample sequential architecture are investigated for that purpose in an iris recognition system. A specific implementation of the multi-part architecture is proposed and the effect of the number of parts and samples in the resultant detection error rate is analysed. The effectiveness of the proposed architecture is then evaluated under two specific cases of obfuscation attack: miosis and mydriasis. Results show that robustness to such obfuscation attacks is achieved, since lower error rates than in the case of the non-fused base system are obtained.
Resumo:
There are currently more than 700 cities operating bike share programs. Purported benefits of bike share include flexible mobility, physical activity, reduced congestion, emissions and fuel use. Implicit or explicit in the calculation of program benefits are assumptions regarding the modes of travel replaced by bike share journeys. This paper examines the degree to which car trips are replaced by bike share, through an examination of survey and trip data from bike share programs in Melbourne, Brisbane, Washington, D.C., London, and Minneapolis/St. Paul. A secondary and unique component of this analysis examines motor vehicle support services required for bike share fleet rebalancing and maintenance. These two components are then combined to estimate bike share’s overall contribution to changes in vehicle kilometers traveled. The results indicate an estimated reduction in motor vehicle use due to bike share of approx. 90,000 km per annum in Melbourne and Minneapolis/St. Paul and 243,291 km for Washington, D.C. London’s bike share program however recorded an additional 766,341 km in motor vehicle use. This was largely due to a low car mode substitution rate and substantial truck use for rebalancing of bicycles. As bike share programs mature, evaluation of their effectiveness in reducing car use may become increasingly important. Researchers can adapt the analytical approach proposed in this paper to assist in the evaluation of current and future bike share programs.
Resumo:
Multitasking, such as the concurrent use of a mobile phone and operating a motor vehicle, is a significant distraction that impairs driving performance and is becoming a leading cause of motor vehicle crashes. This study investigates the impact of mobile phone conversations on car-following behaviour. The CARRS-Q Advanced Driving Simulator was used to test a group of young Australian drivers aged 18 to 26 years on a car-following task in three randomised phone conditions: baseline (no phone conversation), hands-free and handheld. Repeated measure ANOVA was applied to examine the effect of mobile phone distraction on selected car-following variables such as driving speed, spacing, and time headway. Overall, drivers tended to select slower driving speeds, larger vehicle spacings, and longer time headways when they were engaged in either hands-free or handheld phone conversations, suggesting possible risk compensatory behaviour. In addition, phone conversations while driving influenced car-following behaviour such that variability was increased in driving speeds, vehicle spacings, and acceleration and decelerations. To further investigate car-following behaviour of distracted drivers, driver time headways were modelled using Generalized Estimation Equation (GEE). After controlling for various exogenous factors, the model predicts an increase of 0.33 seconds in time headway when a driver is engaged in hands-free phone conversation and a 0.75 seconds increase for handheld phone conversation. The findings will improve the collective understanding of distraction on driving performance, in particular car following behaviour which is most critical in the determination of rear-end crashes.
Resumo:
While the philosophical motivation behind Civil Infrastructure Management Systems is to achieve optimal level of service at a minimum cost, the allocation of scarce resources among competing alternatives is still a matter of debate. It appears to be widely accepted that results from tradeoff analysis can be measured by the degree of accomplishment of the objectives. Road management systems not only deal with different asset types but also with conflicting objectives. This paper presents a case study of lifecycle optimization with tradeoff analysis for a road corridor in New Brunswick. Objectives of the study included condition of bridge and roads and road safety. A road safety index was created based on potential for improvement. Road condition was based on roughness, rutting and cracking. Initial results show lack of sustainability in bridge performance. Therefore, bridges where broken by components: deck, superstructure and substructure. Visual inspections, in addition to construction age of each bridge, were combined to generate a surrogate apparent age. Two life cycle analysis were conducted; one aimed to minimize overall cost while achieving sustainable results and another one purely for optimization. -used to identify required levels of budget. Such analyses were used to identify the minimum required budget and to demonstrate that with the same amount of money it was possible to achieve better levels of performance. Dominance and performance driven criteria were combined to identify and select an optimal result. It was found that achievement of optimally sustained results is conditioned by the availability of treatments for all asset classes at across their life spans. For the case study a disaggregated bridge condition index was introduced to the original algorithm to attempt to achieve sustainability in all bridges components, however lack of early stage treatments for substructures produce declining trends for such a component.
Resumo:
Safety is one of the major world health issues, and is even more acute for “vulnerable” road users, pedestrians and cyclists. At the same time, public authorities are promoting the active modes of transportation that involve these very users for their health benefits. It is therefore important to understand the factors and designs that provide the best safety for vulnerable road users and encourage more people to use these modes. Qualitative and quantitative shortcomings of collisions make it necessary to use surrogate measures of safety in studying these modes. Some interactions without a collision such as conflicts can be good surrogates of collisions as they are more frequent and less costly. To overcome subjectivity and reliability challenges, automatic conflict analysis using video cameras and deriving users’ trajectories is a solution to overcome shortcomings of manual conflict analysis. The goal of this paper is to identify and characterize various interactions between cyclists and pedestrians at bus stops along bike paths using a fully automated process. Three conflict severity indicators are calculated and adapted to the situation of interest to capture those interactions. A microscopic analysis of users’ behavior is proposed to explain interactions more precisely. Eventually, the study aims to show the capability of automatically collecting and analyzing data for pedestrian-cyclist interactions at bus stops along segregated bike paths in order to better understand the actual and perceived risks of these facilities.