959 resultados para Ward identity. Quantum phase transition. Strongly coupling. Landau damping. Quantum anomaly
Resumo:
Oscillator networks have been developed in order to perform specific tasks related to image processing. Here we analytically investigate the existence of synchronism in a pair of phase oscillators that are short-range dynamically coupled. Then, we use these analytical results to design a network able of detecting border of black-and-white figures. Each unit composing this network is a pair of such phase oscillators and is assigned to a pixel in the image. The couplings among the units forming the network are also dynamical. Border detection emerges from the network activity.
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.
Resumo:
Magnetoresistance measurements were performed on an n-type PbTe/PbEuTe quantum well and weak antilocalization effects were observed. This indicates the presence of spin orbit coupling phenomena and we showed that the Rashba effect is the main mechanism responsible for this spin orbit coupling. Using the model developed by Iordanskii et al., we fitted the experimental curves and obtained the inelastic and spin orbit scattering times. Thus we could compare the zero field energy spin-splitting predicted by the Rashba theory with the energy spin-splitting obtained from the analysis of the experimental curves. The final result confirms the theoretical prediction of strong Rashba effect on IV-VI based quantum wells.
Resumo:
We study the transport properties of HgTe-based quantum wells containing simultaneously electrons and holes in a magnetic field B. At the charge neutrality point (CNP) with nearly equal electron and hole densities, the resistance is found to increase very strongly with B while the Hall resistivity turns to zero. This behavior results in a wide plateau in the Hall conductivity sigma(xy) approximate to 0 and in a minimum of diagonal conductivity sigma(xx) at nu = nu(p) - nu(n) = 0, where nu(n) and nu(p) are the electron and hole Landau level filling factors. We suggest that the transport at the CNP point is determined by electron-hole ""snake states'' propagating along the nu = 0 lines. Our observations are qualitatively similar to the quantum Hall effect in graphene as well as to the transport in a random magnetic field with a zero mean value.
Resumo:
Measurements are presented of the complex dynamic Young's modulus of NdNiO(3) and Nd(0.65)Eu(0.35)NiO(3) through the metal-insulator transition (MIT). Upon cooling, the modulus presents a narrow dip at the MIT followed by an abrupt stiffening of similar to 6%. The anomaly is reproducible between cooling and heating in Nd(0.65)Eu(0.35)NiO(3) but appears only as a slow stiffening during cooling in undoped NdNiO(3), in conformance with the fact that the MIT in RNiO(3) changes from strongly first order to second order when the mean R size is decreased. The elastic anomaly seems not to be associated with the antiferromagnetic transition, which is distinct from the MIT in Nd(0.65)Eu(0.35)NiO(3). It is concluded that the steplike stiffening is due to the disappearance or freezing of dynamic Jahn-Teller (JT) distortions through the MIT, where the JT active Ni(3+) is disproportionated into alternating Ni(3+delta) and Ni(3-delta). The fluctuating octahedral JT distortion necessary to justify the observed jump in the elastic modulus is estimated as similar to 3% but does not have a role in determining the MIT, since the otherwise-expected precursor softening is not observed.
Resumo:
The electron spin precession about an external magnetic field was studied by Faraday rotation on an inhomogeneous ensemble of singly charged, self-assembled (In,Ga)As/GaAs quantum dots. From the data the dependence of electron g-factor on optical transition energy was derived. A comparison with literature reports shows that the electron g-factors are quite similar for quantum dots with very different geometrical parameters, and their change with transition energy is almost identical. (C) 2011 American Institute of Physics. [doi:10.1063/1.3588413]
Resumo:
We solve the operator ordering problem for the quantum continuous integrable su(1,1) Landau-Lifshitz model, and give a prescription to obtain the quantum trace identities, and the spectrum for the higher-order local charges. We also show that this method, based on operator regularization and renormalization, which guarantees quantum integrability, as well as the construction of self-adjoint extensions, can be used as an alternative to the discretization procedure, and unlike the latter, is based only on integrable representations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3509374]
Resumo:
We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.
Resumo:
A method to determine the effects of the geometry and lateral ordering on the electronic properties of an array of one-dimensional self-assembled quantum dots is discussed. A model that takes into account the valence-band anisotropic effective masses and strain effects must be used to describe the behavior of the photoluminescence emission, proposed as a clean tool for the characterization of dot anisotropy and/or inter-dot coupling. Under special growth conditions, such as substrate temperature and Arsenic background, 1D chains of In(0.4)Ga(0.6) As quantum dots were grown by molecular beam epitaxy. Grazing-incidence X-ray diffraction measurements directly evidence the strong strain anisotropy due to the formation of quantum dot chains, probed by polarization-resolved low-temperature photoluminescence. The results are in fair good agreement with the proposed model.
Resumo:
We discuss an approximation for the dynamic charge response of nonlinear spin-1/2 Luttinger liquids in the limit of small momentum. Besides accounting for the broadening of the charge peak due to two-holon excitations, the nonlinearity of the dispersion gives rise to a two-spinon peak, which at zero temperature has an asymmetric line shape. At finite temperature the spin peak is broadened by diffusion. As an application, we discuss the density and temperature dependence of the Coulomb drag resistivity due to long-wavelength scattering between quantum wires.
Resumo:
We show that measurements of finite duration performed on an open two-state system can protect the initial state from a phase-noisy environment, provided the measured observable does not commute with the perturbing interaction. When the measured observable commutes with the environmental interaction, the finite-duration measurement accelerates the rate of decoherence induced by the phase noise. For the description of the measurement of an observable that is incompatible with the interaction between system and environment, we have found an approximate analytical expression, valid at zero temperature and weak coupling with the measuring device. We have tested the validity of the analytical predictions against an exact numerical approach, based on the superoperator-splitting method, that confirms the protection of the initial state of the system. When the coupling between the system and the measuring apparatus increases beyond the range of validity of the analytical approximation, the initial state is still protected by the finite-time measurement, according with the exact numerical calculations.
Resumo:
We study the structural phase transitions in confined systems of strongly interacting particles. We consider infinite quasi-one-dimensional systems with different pairwise repulsive interactions in the presence of an external confinement following a power law. Within the framework of Landau's theory, we find the necessary conditions to observe continuous transitions and demonstrate that the only allowed continuous transition is between the single-and the double-chain configurations and that it only takes place when the confinement is parabolic. We determine analytically the behavior of the system at the transition point and calculate the critical exponents. Furthermore, we perform Monte Carlo simulations and find a perfect agreement between theory and numerics.
Resumo:
In this paper, employing the Ito stochastic Schrodinger equation, we extend Bell's beable interpretation of quantum mechanics to encompass dissipation, decoherence, and the quantum-to-classical transition through quantum trajectories. For a particular choice of the source of stochasticity, the one leading to a dissipative Lindblad-type correction to the Hamiltonian dynamics, we find that the diffusive terms in Nelsons stochastic trajectories are naturally incorporated into Bohm's causal dynamics, yielding a unified Bohm-Nelson theory. In particular, by analyzing the interference between quantum trajectories, we clearly identify the decoherence time, as estimated from the quantum formalism. We also observe the quantum-to-classical transition in the convergence of the infinite ensemble of quantum trajectories to their classical counterparts. Finally, we show that our extended beables circumvent the problems in Bohm's causal dynamics regarding stationary states in quantum mechanics.
Resumo:
The influence of interlayer coupling on the formation of the quantized Hall phase at the filling factor nu=2 was studied in multilayer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to localized electrons was found in the quantized Hall phase of the isolated multi-quanturn-well structure. On the other hand, the quantized Hall phase of weakly coupled multilayers emitted an unexpected asymmetrical line similar to that observed in metallic electron systems. We demonstrated that the observed asymmetry is caused by the partial population of extended electron states formed in the insulating quantized Hall phase due to spin-assisted interlayer percolation. A sharp decrease in the single-particle scattering time associated with these extended states was observed for the filling factor nu=2. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2978194]
Resumo:
We introduce an analytical approximation scheme to diagonalize parabolically confined two-dimensional (2D) electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and noncrossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k(R)l of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e. g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the nth Landau-level g(n) factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.