864 resultados para WORLDWIDE BURDEN
Resumo:
Hemophilia B is a genetic disease of the coagulation system that affects one in 30,000 males worldwide. Recombinant human Factor IX (rhFIX) has been used for hemophilia B treatment, but the amount of active protein generated by these systems is inefficient, resulting in a high-cost production of rhFIX. In this study, we developed an alternative for rhFIX production. We used a retrovirus system to obtain two recombinant cell lines. We first tested rhFIX production in the human embryonic kidney 293 cells (293). Next, we tested a hepatic cell line (HepG2) because FIX is primarily expressed in the liver. Our results reveal that intracellular rhFIX expression was more efficient in HepG2/rhFIX (46%) than in 293/rhFIX (21%). The activated partial thromboplastin time test showed that HepG2/rhFIX expressed biologically active rhFIX 1.5 times higher than 293/rhFIX (P = 0.016). Recovery of rhFIX from the HepG2 by reversed-phase chromatography was straightforward. We found that rhFIX has a pharmacokinetic profile similar to that of FIX purified from human plasma when tested in hemophilic B model. HepG2/rhFIX cell line produced the highest levels of rhFIX, representing an efficient in vitro expression system. This work opens up the possibility of significantly reducing the costs of rhFIX production, with implications for expanding hemophilia B treatment in developing countries.
Resumo:
Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.
Resumo:
The fact that the diagnosis of infection with dengue virus is usually made by detecting IgM antibodies during the convalescent phase of the disease interferes with disease management and, consequently, with reducing mortality rates. This study evaluated the sensitivity and specificity of detection of NS1 in samples of patients suspected of acute dengue virus infection in Brazil. The results were used to institute treatment and the sensitivity and specificity of detection of NS1 were compared to the results of detection of IgM, virus isolation, and RT-PCR. Detection of NS1 yielded better results than RTPCR and virus isolation. When considering IgM detection and RT-PCR positive results as ""gold standards,"" the sensitivity and specificity of the NS1 assay were 95.9% and 81.1%, respectively. All patients enrolled in the study were treated promptly and had an uneventful course of the disease. The detection of NS1 provided better results than the diagnostic techniques used currently during the acute phase of disease (RT-PCR and virus isolation). Detection of NS1 is an important tool for the diagnosis of acute dengue infection, particularly in highly endemic areas, allowing for rapid treatment of patients and reduction of disease burden. J. Med. Virol. 82: 1400-1405, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
Context: Mutations in TAC3 and TACR3 (encoding neurokinin B and its receptor) have been identified in Turkish patients with idiopathic hypogonadotropic hypogonadism (IHH), but broader populations have not yet been tested and genotype-phenotype correlations have not been established. Objective: A broad cohort of normosmic IHH probands was screened for mutations in TAC3/TACR3 to evaluate the prevalence of such mutations and define the genotype/phenotype relationships. Design and Setting: The study consisted of sequencing of TAC3/TACR3, in vitro functional assays, and neuroendocrine phenotyping conducted in tertiary care centers worldwide. Patients or Other Participants: 345 probands, 18 family members, and 292 controls were studied. Intervention: Reproductive phenotypes throughout reproductive life and before and after therapy were examined. Main Outcome Measure: Rare sequence variants in TAC3/TACR3 were detected. Results: In TACR3, 19 probands harbored 13 distinct coding sequence rare nucleotide variants [three nonsense mutations, six nonsynonymous, four synonymous (one predicted to affect splicing)]. In TAC3, one homozygous single base pair deletion was identified, resulting in complete loss of the neurokinin B decapeptide. Phenotypic information was available on 16 males and seven females with coding sequence variants in TACR3/TAC3. Of the 16 males, 15 had microphallus; none of the females had spontaneous thelarche. Seven of the 16 males and five of the seven females were assessed after discontinuation of therapy; six of the seven males and four of the five females demonstrated evidence for reversibility of their hypogonadotropism. Conclusions: Mutations in the neurokinin B pathway are relatively common as causes of hypogonadism. Although the neurokinin B pathway appears essential during early sexual development, its importance in sustaining the integrity of the hypothalamic-pituitary-gonadal axis appears attenuated over time. (J Clin Endocrinol Metab 95: 2857-2867, 2010)
Resumo:
Human leukocyte antigen-G (HLA-G) is a non-classical major histocompatibility complex class lb molecule that acts as a specific immunosuppressor. Some studies have demonstrated that human papillomavirus (HPV) seems to be involved in lower or absent HLA-G expression, particularly in cervical cancer. In this study, we performed a cross-sectional study, systematically comparing the qualitative expression of the HLA-G5 isoform in invasive cervical carcinoma (ICC), stratifying patients according to the presence [ICC with metastasis (ICC(W))) and absence [ICC without metastasis (ICC(WT))] of metastasis, correlating these findings with interference of HPV and demographic and clinical variables. Seventy-nine patients with a diagnosis of ICC were stratified into two groups: ICC(WT) (n=52 patients) and ICC(W) (n=27). Two biopsies were collected from each patient (one from the tumor lesion and one from a lymph node). Immunohistochemistry analyses were performed for the HLA-G5 isoform, for HPV detection, and virus typing. HLA-G5 isoform molecules were detected in 25 cases (31.6%), 17 (32.7%) without metastasis and 8 (29.6%) with metastasis. HPV was detected in the cervical lesions of 74 patients (93.7%), but low expression of the HLA-G5 isoform was observed in all HPV-related cases. These findings are important; however, additional studies are necessary to identify the influence of HPV with HLA-G5 isoform expression on invasive cervical malignancies. (J Histochem Cytochem 58:405-411, 2010)
Resumo:
Sepsis results from an overwhelming response to infection and is a major contributor to death in intensive care units worldwide. In recent years, we and others have shown that neutrophil functionality is impaired in sepsis. This correlates with sepsis severity and contributes to aggravation of sepsis by precluding bacterial clearance. Nitric oxide (NO) is a major contributor to the impairment of neutrophil function in sepsis. However, attempts to inhibit NO synthesis in sepsis resulted in increased death despite restoring neutrophil migration. This could be in part attributed to a reduction of the NO-dependent microbicidal activity of neutrophils. In sepsis, the beneficial effects resulting from the inhibition of soluble guanylyl cyclase (sGC), a downstream target of NO, have long been appreciated but poorly understood. However, the effects of sGC inhibition on neutrophil function in sepsis have never been addressed. In the present study, we show that TLR activation in human neutrophils leads to decreased chemotaxis, which correlated with chemotactic receptor internalization and increased G protein-coupled receptor kinase 2 expression, in a process involving the NO-sGC-protein kinase G axis. We also demonstrate that inhibition of sGC activity increased survival in a murine model of sepsis, which was paralleled by restored neutrophil migratory function and increased bacterial clearance. Finally, the beneficial effect of sGC inhibition could also be demonstrated in mice treated after the onset of sepsis. Our results suggest that the beneficial effects of sGC inhibition in sepsis could be at least in part attributed to a recovery of neutrophil functionality.
Resumo:
Tourism has had a profound impact upon destinations worldwide, and although this impact has been positive for many destinations, there are numerous examples where tourism has adversely impacted upon the environment and social fabric of the destination community (Coccossis 1996; Murphy 1985). The negative impacts of tourism have been attributed, among other things, to inadequate or non-existent planning for development (Gunn 1994; Hall2000). This has led to increased calls for tourism planning to offset some of the negative impacts that tourism can have on the destination community. While a number of approaches have been advocated, a collaborative philosophy, based on the principles of sustainability, is more likely to result in acceptable and successful policies and programmes for tourism destinations (Farrell1986; Jamal & Getz 1995; Maitland 2002; Minca & Getz 1995). Such an approach focuses on cooperation and broader based participation in tourism planning and decision-making between stakeholders to lead to agreement on planning directions and goals, with one of the primary objectives of collaborative arrangements being to develop a strategic vision for a destination (Bramwell & Lane 2000). [Extract from introduction]
Resumo:
The mortality and morbidity caused by alcohol, tobacco and illicit drug misuse represents a significant public health burden (Ezzati et al., 2002). A key part of the public health response is the collection of epidemiological and social science data to define at-risk populations to identify opportunities for intervention and to evaluate the effectiveness of policies in preventing or treating drug misuse and drug-related harm. The systematic use of epidemiological and social science research methods to study illicit drug use is barely 40 years old in the United States and United Kingdom, which have pioneered this approach. Because of the sensitive nature of epidemiological research on illicit drug use a unique set of ethical challenges need to be explicitly addressed by the field. Although ethics guidelines have been proposed (Council for International Organizations of Medical Sciences, 1991), scholarship on the ethics of epidemiology is scant, and consensus on core values not yet achieved (Coughlin, 2000).
Resumo:
Breast cancer is the second most frequent type of cancer worldwide and is the most common malignant disease among women. Risk factors for breast cancer include early menarche, late menopause, hormonal therapies, exposure to environmental pollutants, smoking and alcohol use. However, increased or prolonged exposure to estrogen is the most important risk factor. It has been suggested that accumulation of DNA damage may contribute to breast carcinogenesis. Epidemiological studies suggest that cytogenetic biomarkers such as micronuclei in peripheral blood lymphocytes may predict cancer risk because they indicate genomic instability in target tissues. The objective of the present study was to evaluate the frequencies of micronuclei and the extent of DNA damage detected by comet assay in peripheral blood lymphocytes of untreated breast cancer patients and healthy women. The study was conducted using peripheral blood lymphocytes from 45 women diagnosed for Ductal ""in situ"" or invasive breast carcinoma and 85 healthy control women. Micronuclei and comet assays were performed to detect spontaneous DNA damage. The results showed that micronuclei frequencies and tail intensity, detected by comet assay, were significantly higher in the breast cancer group than in controls. The levels of DNA damage were similar in smokers and non-smokers, and aging did not influence the frequencies of micronuclei or tail intensity values observed in either group. In conclusion, the present work demonstrates higher levels of DNA damage in untreated breast cancer patients than in healthy women.