959 resultados para WORK ANALYSIS
Resumo:
The Leaving Certificate (LC) is the national, standardised state examination in Ireland necessary for entry to third level education – this presents a massive, raw corpus of data with the potential to yield invaluable insight into the phenomena of learner interlanguage. With samples of official LC Spanish examination data, this project has compiled a digitised corpus of learner Spanish comprised of the written and oral production of 100 candidates. This corpus was then analysed using a specific investigative corpus technique, Computer-aided Error Analysis (CEA, Dagneaux et al, 1998). CEA is a powerful apparatus in that it greatly facilitates the quantification and analysis of a large learner corpus in digital format. The corpus was both compiled and analysed with the use of UAM Corpus Tool (O’Donnell 2013). This Tool allows for the recording of candidate-specific variables such as grade, examination level, task type and gender, therefore allowing for critical analysis of the corpus as one unit, as separate written and oral sub corpora and also of performance per task, level and gender. This is an interdisciplinary work combining aspects of Applied Linguistics, Learner Corpus Research and Foreign Language (FL) Learning. Beginning with a review of the context of FL learning in Ireland and Europe, I go on to discuss the disciplinary context and theoretical framework for this work and outline the methodology applied. I then perform detailed quantitative and qualitative analyses before going on to combine all research findings outlining principal conclusions. This investigation does not make a priori assumptions about the data set, the LC Spanish examination, the context of FLs or of any aspect of learner competence. It undertakes to provide the linguistic research community and the domain of Spanish language learning and pedagogy in Ireland with an empirical, descriptive profile of real learner performance, characterising learner difficulty.
Resumo:
Simultaneous measurements of high-altitude optical emissions and magnetic fields produced by sprite-associated lightning discharges enable a close examination of the link between low-altitude lightning processes and high-altitude sprite processes. We report results of the coordinated analysis of high-speed sprite video and wideband magnetic field measurements recorded simultaneously at Yucca Ridge Field Station and Duke University. From June to August 2005, sprites were detected following 67 lightning strokes, all of which had positive polarity. Our data showed that 46% of the 83 discrete sprite events in these sequences initiated more than 10 ms after the lightning return stroke, and we focus on these delayed sprites in this work. All delayed sprites were preceded by continuing current moments that averaged at least 11 kA km between the return stroke and sprites. The total lightning charge moment change at sprite initiation varied from 600 to 18,600 C km, and the minimum value to initiate long-delayed sprites ranged from 600 for 15 ms delay to 2000 C km for more than 120 ms delay. We numerically simulated electric fields at altitudes above these lightning discharges and found that the maximum normalized electric fields are essentially the same as fields that produce short-delayed sprites. Both estimated and simulation-predicted sprite initiation altitudes indicate that long-delayed sprites generally initiate around 5 km lower than short-delayed sprites. The simulation results also reveal that slow (5-20 ms) intensifications in continuing current can play a major role in initiating delayed sprites. Copyright 2008 by the American Geophysical Union.
Resumo:
In recent years, the storage and use of residual newborn screening (NBS) samples has gained attention. To inform ongoing policy discussions, this article provides an update of previous work on new policies, educational materials, and parental options regarding the storage and use of residual NBS samples. A review of state NBS Web sites was conducted for information related to the storage and use of residual NBS samples in January 2010. In addition, a review of current statutes and bills introduced between 2005 and 2009 regarding storage and/or use of residual NBS samples was conducted. Fourteen states currently provide information about the storage and/or use of residual NBS samples. Nine states provide parents the option to request destruction of the residual NBS sample after the required storage period or the option to exclude the sample for research uses. In the coming years, it is anticipated that more states will consider policies to address parental concerns about the storage and use of residual NBS samples. Development of new policies regarding storage and use of residual NBS samples will require careful consideration of impact on NBS programs, parent and provider educational materials, and respect for parents among other issues.
Resumo:
Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.
Resumo:
BACKGROUND: The inherent complexity of statistical methods and clinical phenomena compel researchers with diverse domains of expertise to work in interdisciplinary teams, where none of them have a complete knowledge in their counterpart's field. As a result, knowledge exchange may often be characterized by miscommunication leading to misinterpretation, ultimately resulting in errors in research and even clinical practice. Though communication has a central role in interdisciplinary collaboration and since miscommunication can have a negative impact on research processes, to the best of our knowledge, no study has yet explored how data analysis specialists and clinical researchers communicate over time. METHODS/PRINCIPAL FINDINGS: We conducted qualitative analysis of encounters between clinical researchers and data analysis specialists (epidemiologist, clinical epidemiologist, and data mining specialist). These encounters were recorded and systematically analyzed using a grounded theory methodology for extraction of emerging themes, followed by data triangulation and analysis of negative cases for validation. A policy analysis was then performed using a system dynamics methodology looking for potential interventions to improve this process. Four major emerging themes were found. Definitions using lay language were frequently employed as a way to bridge the language gap between the specialties. Thought experiments presented a series of "what if" situations that helped clarify how the method or information from the other field would behave, if exposed to alternative situations, ultimately aiding in explaining their main objective. Metaphors and analogies were used to translate concepts across fields, from the unfamiliar to the familiar. Prolepsis was used to anticipate study outcomes, thus helping specialists understand the current context based on an understanding of their final goal. CONCLUSION/SIGNIFICANCE: The communication between clinical researchers and data analysis specialists presents multiple challenges that can lead to errors.
Resumo:
We develop an analytic framework for the analysis of robustness in social-ecological systems (SESs) over time. We argue that social robustness is affected by the disturbances that communities face and the way they respond to them. Using Ostrom's ontological framework for SESs, we classify the major factors influencing the disturbances and responses faced by five Indiana intentional communities over a 15-year time frame. Our empirical results indicate that operational and collective-choice rules, leadership and entrepreneurship, monitoring and sanctioning, economic values, number of users, and norms/social capital are key variables that need to be at the core of future theoretical work on robustness of self-organized systems. © 2010 by the author(s).
Resumo:
Axisymmetric radiating and scattering structures whose rotational invariance is broken by non-axisymmetric excitations present an important class of problems in electromagnetics. For such problems, a cylindrical wave decomposition formalism can be used to efficiently obtain numerical solutions to the full-wave frequency-domain problem. Often, the far-field, or Fraunhofer region is of particular interest in scattering cross-section and radiation pattern calculations; yet, it is usually impractical to compute full-wave solutions for this region. Here, we propose a generalization of the Stratton-Chu far-field integral adapted for 2.5D formalism. The integration over a closed, axially symmetric surface is analytically reduced to a line integral on a meridional plane. We benchmark this computational technique by comparing it with analytical Mie solutions for a plasmonic nanoparticle, and apply it to the design of a three-dimensional polarization-insensitive cloak.
Resumo:
UNLABELLED: BACKGROUND: Primary care, an essential determinant of health system equity, efficiency, and effectiveness, is threatened by inadequate supply and distribution of the provider workforce. The Veterans Health Administration (VHA) has been a frontrunner in the use of nurse practitioners (NPs) and physician assistants (PAs). Evaluation of the roles and impact of NPs and PAs in the VHA is critical to ensuring optimal care for veterans and may inform best practices for use of PAs and NPs in other settings around the world. The purpose of this study was to characterize the use of NPs and PAs in VHA primary care and to examine whether their patients and patient care activities were, on average, less medically complex than those of physicians. METHODS: This is a retrospective cross-sectional analysis of administrative data from VHA primary care encounters between 2005 and 2010. Patient and patient encounter characteristics were compared across provider types (PA, NP, and physician). RESULTS: NPs and PAs attend about 30% of all VHA primary care encounters. NPs, PAs, and physicians fill similar roles in VHA primary care, but patients of PAs and NPs are slightly less complex than those of physicians, and PAs attend a higher proportion of visits for the purpose of determining eligibility for benefits. CONCLUSIONS: This study demonstrates that a highly successful nationwide primary care system relies on NPs and PAs to provide over one quarter of primary care visits, and that these visits are similar to those of physicians with regard to patient and encounter characteristics. These findings can inform health workforce solutions to physician shortages in the USA and around the world. Future research should compare the quality and costs associated with various combinations of providers and allocations of patient care work, and should elucidate the approaches that maximize quality and efficiency.
Resumo:
*Designated as an exemplary master's project for 2015-16*
This paper examines how contemporary literature contributes to the discussion of punitory justice. It uses close analysis of three contemporary novels, Margaret Atwood’s The Heart Goes Last, Hillary Jordan’s When She Woke, and Joyce Carol Oates’s Carthage, to deconstruct different conceptions of punitory justice. This analysis is framed and supported by relevant social science research on the concept of punitivity within criminal justice. Each section examines punitory justice at three levels: macro, where media messages and the predominant social conversation reside; meso, which involves penal policy and judicial process; and micro, which encompasses personal attitudes towards criminal justice. The first two chapters evaluate works by Atwood and Jordan, examining how their dystopian schemas of justice shed light on top-down and bottom-up processes of punitory justice in the real world. The third chapter uses a more realistic novel, Oates’s Carthage, to examine the ontological nature of punitory justice. It explores a variety of factors that give rise to and legitimize punitory justice, both at the personal level and within a broader cultural consensus. This chapter also discusses how both victim and perpetrator can come to stand in as metaphors to both represent and distract from broader social issues. As a whole, analysis of these three novels illuminate how current and common conceptualizations of justice have little to do with the actual act of transgression itself. Instead, justice emerges as a set of specific, conditioned responses to perceived threats, mediated by complex social, cultural, and emotive forces.
Resumo:
Most of the air quality modelling work has been so far oriented towards deterministic simulations of ambient pollutant concentrations. This traditional approach, which is based on the use of one selected model and one data set of discrete input values, does not reflect the uncertainties due to errors in model formulation and input data. Given the complexities of urban environments and the inherent limitations of mathematical modelling, it is unlikely that a single model based on routinely available meteorological and emission data will give satisfactory short-term predictions. In this study, different methods involving the use of more than one dispersion model, in association with different emission simulation methodologies and meteorological data sets, were explored for predicting best CO and benzene estimates, and related confidence bounds. The different approaches were tested using experimental data obtained during intensive monitoring campaigns in busy street canyons in Paris, France. Three relative simple dispersion models (STREET, OSPM and AEOLIUS) that are likely to be used for regulatory purposes were selected for this application. A sensitivity analysis was conducted in order to identify internal model parameters that might significantly affect results. Finally, a probabilistic methodology for assessing urban air quality was proposed.
Resumo:
In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfill: the application and curing of the former can be undertaken before and during the reflow process. This advantage can be exploited to increase the flip-chip manufacturing throughput. However, adopting a no-flow underfill process may introduce reliability issues such as underfill entrapment, delamination at interfaces between underfill and other materials, and lower solder joint fatigue life. This paper presents an analysis on the assembly and the reliability of flip-chips with no-flow underfill. The methodology adopted in the work is a combination of experimental and computer-modeling methods. Two types of no-flow underfill materials have been used for the flip chips. The samples have been inspected with X-ray and scanning acoustic microscope inspection systems to find voids and other defects. Eleven samples for each type of underfill material have been subjected to thermal shock test and the number of cycles to failure for these flip chips have been found. In the computer modeling part of the work, a comprehensive parametric study has provided details on the relationship between the material properties and reliability, and on how underfill entrapment may affect the thermal–mechanical fatigue life of flip chips with no-flow underfill.
Resumo:
This paper reports on research work undertaken for the European Commission funded study GMA2/2000/32039 Very Large Transport Aircraft (VLTA) Emergency Requirements Research Evacuation Study (VERRES). A particular focus of VERRES was on evacuation issues and several large-scale evacuation trials were conducted in the CRANFIELD simulator. This paper addresses part of the research undertaken for Work Package 3 by the University of Greenwich with a focus on the analysis of the data concerning passenger use of stairs and passenger exit hesitation time analysis for upper deck slides.
Resumo:
A wide range of flip chip technologies with solder or adhesives have become dominant solutions for high density packaging applications due to the excellent electrical performance, high I/O density and good thermal performance. This paper discusses the use of modeling technique to predict the reliability of high density packaged flip chips in the humid environment. Reliability assessment is discussed for flip chip package at ultra-fine pitch with anisotropic conductive film (ACF). The purpose of this modeling work is to understand the role that moisture plays in the failure of ACF flip chips. A macro-micro 3D finite element modeling technique was used in order to make the multi-length-scale modeling of the ACF flip chip possible. Modeling results are consistent with the findings in the experimental work
Resumo:
This paper reports the investigations into the moisture induced failures in flip-chip-on-flex interconnections with anisotropic conductive films (ACF). Both experimental and modeling methods were applied. In the experiments, the contact resistance was used as a quality indicator and was measured continuously during the accelerated tests (autoclave tests). The temperature, relative humidity and the pressure were set at 121°C, 100%RH, 1atm respectively. The contact resistance of the ACF joints increased during the tests and nearly 25% of the joints were found to be open after 168 hours' testing time. Visible conduction gaps between the adhesive and substrate pads were observed. Cracks at the adhesive/flex interface were also found. It is believed that the swelling effect of the adhesive and the water penetration along the adhesive/flex interface are the main causes of this contact degradation. Another finding from the experimental work was that the ACF interconnections that had undergone the reflow treatment were more sensitive to the moisture and showed worse reliability during the tests. For a better understanding of the experimental results, 3D finite element (FE) models were built and a macro-micro modeling method was used to determine the moisture diffusion and moisture-induced stresses inside the ACF joints. Modeling results are consistent with the findings in the experimental work.
Resumo:
Problems in the preservation of the quality of granular material products are complex and arise from a series of sources during transport and storage. In either designing a new plant or, more likely, analysing problems that give rise to product quality degradation in existing operations, practical measurement and simulation tools and technologies are required to support the process engineer. These technologies are required to help in both identifying the source of such problems and then designing them out. As part of a major research programme on quality in particulate manufacturing computational models have been developed for segregation in silos, degradation in pneumatic conveyors, and the development of caking during storage, which use where possible, micro-mechanical relationships to characterize the behaviour of granular materials. The objective of the work presented here is to demonstrate the use of these computational models of unit processes involved in the analysis of large-scale processes involving the handling of granular materials. This paper presents a set of simulations of a complete large-scale granular materials handling operation, involving the discharge of the materials from a silo, its transport through a dilute-phase pneumatic conveyor, and the material storage in a big bag under varying environmental temperature and humidity conditions. Conclusions are drawn on the capability of the computational models to represent key granular processes, including particle size segregation, degradation, and moisture migration caking.