978 resultados para WATER QUALITY


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reverse osmosis (RO) is the most preferable process for water recovery from secondary effluent (SE) because of its higher rejection of impurities with lower associated cost and higher quality of product. Fouling still is a major challenge during the water recovery due to higher contaminant loadings in SE and high rejection capability of this membrane. The presence of suspended solids, colloidal and organic matters, and high level of biological activities in SE further elevate fouling potentiality. This review was performed to identify major foulants causing hindrance in sustainable application of reverse osmosis and to present available pre-treatment options for these foulants. There are four fouling types present in RO namely; bio-fouling, inorganic/scaling, organic, and particulate fouling. Among them; bio-fouling is less understood but dominant since the pre-treatment options are not well developed. Other fouling mechanisms have been overcome by well developed pre-treatments. The major foulants for RO are dissolved and macromolecular organic substances, sparingly soluble inorganic compounds, colloidal and suspended particles, and micro-organisms. Some of these potential fouling water quality parameters (PFWQPs) are interrelated with each others such as electrical conductivity is a surrogate measure of total dissolved solids with established stable relationship. Most of these PFWQPs such as total suspended solids, turbidity, chemical oxygen demand can be removed by conventional pre-treatment; some such as colloidal particles and micro-organisms by modern options and even others such as endocrine disrupting compounds, pharmaceutical and personal care products are still challenging for current pre-treatments. These foulants need to be identified properly to integrate appropriate pre-treatments for minimizing fouling potentiality to increase water recovery at minimal costs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The United Arab Emirates (UAE) face a serious water problem. It has a very dry climate, high evaporation rate, combined with large water consumption from fast growing population, economic activities and uncontrolled uses of water for irrigation. Currently, UAE has one of the largest water footprints in the world. Groundwater is overexploited. Waste water is increasingly being treated to supply non-drinking water, but it still cover a small proportion of the demand. Desalination of sea water is the main source of potable water in UAE, but the high economic cost of desalination, its intensive energy demand and the adverse effects of its effluents on the marine life are a major concern. Other factors contributing to the problem are the focus of water management policies on keep supplying the growing demand for water, the increase of the per capita water consumption, and the free water charge for most of population. This research goal is to develop a water sustainability set of indicators for the challenging context of UAE. This paper presents the first stage of the research. Based on a review of the literature, the proposed framework involves 19 indicators, divided into four categories: water availability; water quality; water use efficiency; and policy and governance. Using an integrated cause-effect approach (DSR - Driving force, State, Response), the indicators were related in terms of their interdependencies, with a holistic view of the city water cycle. A preliminary test of the indicators to Abu Dhabi as a case study allowed an evaluation of the main 'Driving force' on the system, such as the scarcity of water due to natural constraints of the region, and increasing water consumption patterns of modern society; an assessment of the current 'state', which is under serious water stress. Also it indicated some potential 'responses', such as implementing policies for increasing efficient use.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, permeate from a hollow fiber polyethylene (PE) membrane bio-reactor (MBR) system treating synthetic agricultural wastewater was fed into a cellulose acetate brackish water reverse osmosis (BWRO30 2540) membrane system; three different trans-membranes pressures (TMPs) of 1000, 2500, and 4000 kPa were selected to evaluate the system performance in terms of general operating parameters as well as the removal of chosen important potential fouling water quality parameters. The results showed that highest corrected permeate flux rate was at a TMP of 2500 kPa, whereas lowest recorded at a TMP of 4000 kPa. Similar situation prevailed in water recovery rate. But temperature corrected specific fluxes decreased as the applied TMPs increased. In all selected TMPs, more than 96% of salinity was removed. Permeate from MBR as feed to reverse osmosis required frequent chemical cleaning than the microfiltration/ultrafiltration (MF/UF) permeates and granular media filter (GMF) filtered in order to maintain the required rate of product water. One of the reasons for this frequent chemical cleaning is due to higher total organic carbon as well as total nitrogen (TN) in the MBR permeate. This result needs to be further evaluated through field trials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to investigate the occurrence of antibiotic resistance genes (ARGs) in water used for irrigation in the Werribee River Basin, Australia, including river water and reclaimed effluent water (reclaimed water). Samples of reclaimed water, collected over a one-year period, were screened for the occurrence of ARGs using PCR detection assays. The presence of ARGs in the reclaimed water samples were contrasted with that of water samples taken from the Werribee River Basin, collected over the same time period, from five points selected for varying levels of urban and agricultural impact. Of the 54 river water samples collected, 2 (4%), 2 (4%), 0 and 0 were positive for methicillin, sulfonamide, gentamicin and vancomycin-resistant genes, respectively, while 6 of 11 reclaimed water samples were positive for methicillin (9%) and sulfonamide (45%). The presence/absence of ARGs did not appear to correlate with other measured water quality parameters. The low detection of ARGs in river water indicates that, regardless of its poor quality, the river has not yet been severely contaminated with ARGs. The greater prevalence of ARGs in reclaimed water indicates that this important agricultural water source will need to be monitored into the future.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Lake Pertobe wetland system is a semi-natural wetland that has been modified primarily for recreational use. However, this lake system receives stormwater from much of the central business district of Warrnambool City (Victoria, Australia) and serves as a buffer zone between the stormwater system and the Merri River and Merri Marine Sanctuary. This work considers the impact of stormwater inputs on Lake Pertobe and the effectiveness of the lake in protecting the associated marine sanctuary. Sediment contaminants (including heavy metals and polycyclic aromatic hydrocarbons (PAHs)) and water quality parameters within the lake, groundwater and stormwater system were measured. Water quality parameters were highly variable between stormwater drains and rain events. Suspended solids rapidly settled along open drains and shortly after entering the lake. Groundwater inputs increased both salinity and dissolved nitrogen in some stormwater drains. Some evidence of bioaccumulation of metals in the food chain was identified and sediment concentrations of several PAHs were very high. The lake acted as a sink for PAHs and some metals and reductions in Escherichia coli, biological oxygen demand and total phosphorus were observed, affording some protection to the associated marine sanctuary. Nutrient retention was inadequate overall and it was identified that managing the lake primarily as a recreational facility impacted on the effectiveness of stormwater treatment in the system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drinking water utilities in urban areas are focused on finding smart solutions facing new challenges in their real-time operation because of limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. Such challenges force water managers to monitor and control not only water supply and distribution, but also consumer demand. This paper presents and discusses novel methodologies and procedures towards an integrated water resource management system based on advanced ICT technologies of automation and telecommunications for largely improving the efficiency of drinking water networks (DWN) in terms of water use, energy consumption, water loss minimization, and water quality guarantees. In particular, the paper addresses the first results of the European project EFFINET (FP7-ICT2011-8-318556) devoted to the monitoring and control of the DWN in Barcelona (Spain). Results are split in two levels according to different management objectives: (i) the monitoring level is concerned with all the aspects involved in the observation of the current state of a system and the detection/diagnosis of abnormal situations. It is achieved through sensors and communications technology, together with mathematical models; (ii) the control level is concerned with computing the best suitable and admissible control strategies for network actuators as to optimize a given set of operational goals related to the performance of the overall system. This level covers the network control (optimal management of water and energy) and the demand management (smart metering, efficient supply). The consideration of the Barcelona DWN as the case study will allow to prove the general applicability of the proposed integrated ICT solutions and their effectiveness in the management of DWN, with considerable savings of electricity costs and reduced water loss while ensuring the high European standards of water quality to citizens.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Drinking water distribution networks risk exposure to malicious or accidental contamination. Several levels of responses are conceivable. One of them consists to install a sensor network to monitor the system on real time. Once a contamination has been detected, this is also important to take appropriate counter-measures. In the SMaRT-OnlineWDN project, this relies on modeling to predict both hydraulics and water quality. An online model use makes identification of the contaminant source and simulation of the contaminated area possible. The objective of this paper is to present SMaRT-OnlineWDN experience and research results for hydraulic state estimation with sampling frequency of few minutes. A least squares problem with bound constraints is formulated to adjust demand class coefficient to best fit the observed values at a given time. The criterion is a Huber function to limit the influence of outliers. A Tikhonov regularization is introduced for consideration of prior information on the parameter vector. Then the Levenberg-Marquardt algorithm is applied that use derivative information for limiting the number of iterations. Confidence intervals for the state prediction are also given. The results are presented and discussed on real networks in France and Germany.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this study is to develop a Pollution Early Warning System (PEWS) for efficient management of water quality in oyster harvesting areas. To that end, this paper presents a web-enabled, user-friendly PEWS for managing water quality in oyster harvesting areas along Louisiana Gulf Coast, USA. The PEWS consists of (1) an Integrated Space-Ground Sensing System (ISGSS) gathering data for environmental factors influencing water quality, (2) an Artificial Neural Network (ANN) model for predicting the level of fecal coliform bacteria, and (3) a web-enabled, user-friendly Geographic Information System (GIS) platform for issuing water pollution advisories and managing oyster harvesting waters. The ISGSS (data acquisition system) collects near real-time environmental data from various sources, including NASA MODIS Terra and Aqua satellites and in-situ sensing stations managed by the USGS and the NOAA. The ANN model is developed using the ANN program in MATLAB Toolbox. The ANN model involves a total of 6 independent environmental variables, including rainfall, tide, wind, salinity, temperature, and weather type along with 8 different combinations of the independent variables. The ANN model is constructed and tested using environmental and bacteriological data collected monthly from 2001 – 2011 by Louisiana Molluscan Shellfish Program at seven oyster harvesting areas in Louisiana Coast, USA. The ANN model is capable of explaining about 76% of variation in fecal coliform levels for model training data and 44% for independent data. The web-based GIS platform is developed using ArcView GIS and ArcIMS. The web-based GIS system can be employed for mapping fecal coliform levels, predicted by the ANN model, and potential risks of norovirus outbreaks in oyster harvesting waters. The PEWS is able to inform decision-makers of potential risks of fecal pollution and virus outbreak on a daily basis, greatly reducing the risk of contaminated oysters to human health.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We evaluated the water characteristics and particle sedimentation in Macrobrachium amazonicum (Heller 1862) grow-out ponds supplied with a high inflow of nutrient-rich water. Prawns were subject to different stocking and harvesting strategies: upper-graded juveniles, lower-graded juveniles, non-graded juveniles + selective harvesting and traditional farming (non-grading juveniles and total harvest only). Dissolved oxygen, afternoon N-ammonia and N-nitrate and soluble orthophosphate were lower in the ponds in comparison with inflow water through the rearing cycle. Ponds stocked with the upper population fraction of graded prawns showed higher turbidity, total suspended solids and total Kjeldahl nitrogen than the remaining treatments. An increase in the chemical oxygen demand:biochemical oxygen demand ratio from inlet (4.9) to pond (7.1-8.0) waters indicated a non-readily biodegradable fraction enhancement in ponds. The sedimentation mean rate ranged from 0.08 to 0.16 mm day(-1) and sediment contained >80% of organic matter. The major factors affecting pond ecosystem dynamic were the organic load (due to primary production and feed addition) and bioturbation caused by stocking larger animals. Data suggest that M. amazonicum grow-out in ponds subjected to a high inflow of nutrient-rich water produce changes in the water properties, huge accumulation of organic sediment at the pond bottom and non-readily biodegradable material in the water column. However, the water quality remains suitable for aquaculture purposes. Therefore, nutrient-rich waters, when available, may represent a source of unpaid nutrients, which may be incorporated into economically valued biomass if managed properly.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study evaluated stress indicators in pacu exposed to ammonia in water under the following conditions: without NH4Cl (0.00 g/L); with 0.0078 g NH4Cl/L; and with 0.078 g NH4Cl/L (pH 8.3 and 27 ºC). After the salt dilution the water flow was interrupted and reestablished in 24 hours. Sampling occurred prior to the addition of NH4Cl (control) and after 12, 24 and 48 hours. Glycaemia increased only in fish with the highest salt concentration when compared with group control, regardless of time, and at 24 hours, regardless of treatment. Plasma ammonia, highest in fish exposed to the highest NH4Cl concentration, decreased progressively up to 48 hours. Plasma chloride only decreased in fish not exposed to salt when compared with control and osmolality increased after 24 hours. Hematocrit (Ht), number and volume of erythrocytes and hemoglobin did not change when NH4Cl was added; Ht decrease was reported after 12 hours, but it was not followed by the other blood parameters. The results show tolerance of the pacu to ammonia in the environment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, micronucleus (MN) and chromosome aberration (CA) tests in Allium cepa (onion) were carried out in order to make a preliminary characterization of the water quality of the Atibaia River in an area that is under the influence of petroleum refinery and also to evaluate the effectiveness of the treatments used by the refinery. For these evaluations, seeds of A. cepa were germinated in waters collected in five different sites related with the refinery in ultra-pure water (negative control) and in methyl methanesulfonate solution (positive control). According to our results, we can suggest that even after the treatments (physicochemical, biological and stabilization pond) the final refinery effluent could induce chromosome aberrations and micronucleus in meristematic cells of A. cepa and that the discharge of the petroleum refinery effluents in the Atibaia River can interfere in the quality of this river. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study, we applied Chromosome Aberration (CA) and Micronucleus (MN) tests to Allium cepa root cells, in order to evaluate the water quality of Guaeca river. This river, located in the city of Sao Sebastiao, SP, Brazil, had been affected by an oil pipeline leak. Chemical analyses of Total Petroleum Hydrocarbons (TPHs) and Polycyclic Aromatic Hydrocarbons (PAHs) were also carried out in water samples, collected in July 2005 (dry season) and February 2006 (rainy season) in 4 different river sites. The largest CA and MN incidence in the meristematic cells of A. cepa was observed after exposure to water sample collected during the dry season, at the spring of the river, where the oil leak has arisen. The F, cells from roots exposed to such sample (non-merismatic region) were also analyzed for the incidence of MN, showing a larger frequency of irregularities, indicating a possible development of CA into MN. Lastly, our study reveals a direct correlation between water chemical analyses (contamination by TPHs and PAHs) and both genotoxic and mutagenic effects observed in exposed A. cepa cells. (C) 2007 Elsevier B.V. All rights reserved.