860 resultados para Volatility Models, Volatility, Equity Markets


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis of the equity premium puzzle has focused on private sector capital markets. The object of this paper is to consider the welfare and policy implications of each of the broad classes of explanations of the equity premium puzzle. As would be expected, the greater the deviation from the first-best outcome implied by a given explanation of the equity premium puzzle, the more interventionist are the implied policy conclusions. Nevertheless, even explanations of the equity premium puzzle consistent with a general consumption-based asset pricing model have important welfare and policy implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foreign Exchange trading has emerged in recent times as a significant activity in many countries. As with most forms of trading, the activity is influenced by many random parameters so that the creation of a system that effectively emulates the trading process will be very helpful. In this paper we try to create such a system using Machine learning approach to emulate trader behaviour on the Foreign Exchange market and to find the most profitable trading strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Model transformations are an integral part of model-driven development. Incremental updates are a key execution scenario for transformations in model-based systems, and are especially important for the evolution of such systems. This paper presents a strategy for the incremental maintenance of declarative, rule-based transformation executions. The strategy involves recording dependencies of the transformation execution on information from source models and from the transformation definition. Changes to the source models or the transformation itself can then be directly mapped to their effects on transformation execution, allowing changes to target models to be computed efficiently. This particular approach has many benefits. It supports changes to both source models and transformation definitions, it can be applied to incomplete transformation executions, and a priori knowledge of volatility can be used to further increase the efficiency of change propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As várias teorias acerca da estrutura de capital despertam interesse motivando diversos estudos sobre o assunto sem, no entanto, ter um consenso. Outro tema aparentemente pouco explorado refere-se ao ciclo de vida das empresas e como ele pode influenciar a estrutura de capital. Este estudo teve como objetivo verificar quais determinantes possuem maior relevância no endividamento das empresas e se estes determinantes alteram-se dependendo do ciclo de vida da empresa apoiada pelas teorias Trade Off, Pecking Order e Teoria da Agência. Para alcançar o objetivo deste trabalho foi utilizado análise em painel de efeito fixo sendo a amostra composta por empresas brasileiras de capital aberto, com dados secundários disponíveis na Economática® no período de 2005 a 2013, utilizando-se os setores da BM&FBOVESPA. Como resultado principal destaca-se o mesmo comportamento entre a amostra geral, alto e baixo crescimento pelo endividamento contábil para o determinante Lucratividade apresentando uma relação negativa, e para os determinantes Oportunidade de Crescimento e Tamanho, estes com uma relação positiva. Para os grupos de alto e baixo crescimento alguns determinantes apresentaram resultados diferentes, como a singularidade que resultou significância nestes dois grupos, sendo positiva no baixo crescimento e negativa no alto crescimento, para o valor colateral dos ativos e benefício fiscal não dívida apresentaram significância apenas no grupo de baixo crescimento. Para o endividamento a valor de mercado foi observado significância para o Benefício fiscal não dívida e Singularidade. Este resultado reforça o argumento de que o ciclo de vida influência a estrutura de capital

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a forecasting technique for forward energy prices, one day ahead. This technique combines a wavelet transform and forecasting models such as multi- layer perceptron, linear regression or GARCH. These techniques are applied to real data from the UK gas markets to evaluate their performance. The results show that the forecasting accuracy is improved significantly by using the wavelet transform. The methodology can be also applied to forecasting market clearing prices and electricity/gas loads.