930 resultados para Visual and auditory processing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Social cognition is an important aspect of social behavior in humans. Social cognitive deficits are associated with neurodevelopmental and neuropsychiatric disorders. In this study we examine the neural substrates of social cognition and face processing in a group of healthy young adults to examine the neural substrates of social cognition. METHODS: Fifty-seven undergraduates completed a battery of social cognition tasks and were assessed with electroencephalography (EEG) during a face-perception task. A subset (N=22) were administered a face-perception task during functional magnetic resonance imaging. RESULTS: Variance in the N170 EEG was predicted by social attribution performance and by a quantitative measure of empathy. Neurally, face processing was more bilateral in females than in males. Variance in fMRI voxel count in the face-sensitive fusiform gyrus was predicted by quantitative measures of social behavior, including the Social Responsiveness Scale (SRS) and the Empathizing Quotient. CONCLUSIONS: When measured as a quantitative trait, social behaviors in typical and pathological populations share common neural pathways. The results highlight the importance of viewing neurodevelopmental and neuropsychiatric disorders as spectrum phenomena that may be informed by studies of the normal distribution of relevant traits in the general population. Copyright 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in the field of statistical learning have established that learners are able to track regularities of multimodal stimuli, yet it is unknown whether the statistical computations are performed on integrated representations or on separate, unimodal representations. In the present study, we investigated the ability of adults to integrate audio and visual input during statistical learning. We presented learners with a speech stream synchronized with a video of a speaker's face. In the critical condition, the visual (e.g., /gi/) and auditory (e.g., /mi/) signals were occasionally incongruent, which we predicted would produce the McGurk illusion, resulting in the perception of an audiovisual syllable (e.g., /ni/). In this way, we used the McGurk illusion to manipulate the underlying statistical structure of the speech streams, such that perception of these illusory syllables facilitated participants' ability to segment the speech stream. Our results therefore demonstrate that participants can integrate audio and visual input to perceive the McGurk illusion during statistical learning. We interpret our findings as support for modality-interactive accounts of statistical learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recovering the architecture is the first step towards reengineering a software system. Many reverse engineering tools use top-down exploration as a way of providing a visual and interactive process for architecture recovery. During the exploration process, the user navigates through various views on the system by choosing from several exploration operations. Although some sequences of these operations lead to views which, from the architectural point of view, are mode relevant than others, current tools do not provide a way of predicting which exploration paths are worth taking and which are not. In this article we propose a set of package patterns which are used for augmenting the exploration process with in formation about the worthiness of the various exploration paths. The patterns are defined based on the internal package structure and on the relationships between the package and the other packages in the system. To validate our approach, we verify the relevance of the proposed patterns for real-world systems by analyzing their frequency of occurrence in six open-source software projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of semantic memory in patients with Alzheimer's disease (AD) has raised important questions about the representation of conceptual knowledge in the human brain. It is still unknown whether semantic memory impairments are caused by localized damage to specialized regions or by diffuse damage to distributed representations within nonspecialized brain areas. To our knowledge, there have been no direct correlations of neuroimaging of in vivo brain function in AD with performance on tasks differentially addressing visual and functional knowledge of living and nonliving concepts. We used a semantic verification task and resting 18-fluorodeoxyglucose positron emission tomography in a group of mild to moderate AD patients to investigate this issue. The four task conditions required semantic knowledge of (1) visual, (2) functional properties of living objects, and (3) visual or (4) functional properties of nonliving objects. Visual property verification of living objects was significantly correlated with left posterior fusiform gyrus metabolism (Brodmann's area [BA] 37/19). Effects of visual and functional property verification for non-living objects largely overlapped in the left anterior temporal (BA 38/20) and bilateral premotor areas (BA 6), with the visual condition extending more into left lateral precentral areas. There were no associations with functional property verification for living concepts. Our results provide strong support for anatomically separable representations of living and nonliving concepts, as well as visual feature knowledge of living objects, and against distributed accounts of semantic memory that view visual and functional features of living and nonliving objects as distributed across a common set of brain areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Visual hallucinations are under-reported by patients and are often undiscovered by health professionals. There is no gold standard available to assess hallucinations. Our objective was to develop a reliable, valid, semi-structured interview for identifying and assessing visual hallucinations in older people with eye disease and cognitive impairment. METHODS: We piloted the North-East Visual Hallucinations Interview (NEVHI) in 80 older people with visual and/or cognitive impairment (patient group) and 34 older people without known risks of hallucinations (control group). The informants of 11 patients were interviewed separately. We established face validity, content validity, criterion validity, inter-rater agreement and the internal consistency of the NEVHI, and assessed the factor structure for questions evaluating emotions, cognitions, and behaviours associated with hallucinations. RESULTS: Recurrent visual hallucinations were common in the patient group (68.8%) and absent in controls (0%). The criterion, face and content validities were good and the internal consistency of screening questions for hallucinations was high (Cronbach alpha: 0.71). The inter-rater agreements for simple and complex hallucinations were good (Kappa 0.72 and 0.83, respectively). Four factors associated with experiencing hallucinations (perceived control, pleasantness, distress and awareness) were identified and explained a total variance of 73%. Informants gave more 'don't know answers' than patients throughout the interview (p = 0.008), especially to questions evaluating cognitions and emotions associated with hallucinations (p = 0.02). CONCLUSIONS: NEVHI is a comprehensive assessment tool, helpful to identify the presence of visual hallucinations and to quantify cognitions, emotions and behaviours associated with hallucinations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Routine bridge inspections require labor intensive and highly subjective visual interpretation to determine bridge deck surface condition. Light Detection and Ranging (LiDAR) a relatively new class of survey instrument has become a popular and increasingly used technology for providing as-built and inventory data in civil applications. While an increasing number of private and governmental agencies possess terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities and potential applications continues to evolve. LiDAR is a line-of-sight instrument and as such, care must be taken when establishing scan locations and resolution to allow the capture of data at an adequate resolution for defining features that contribute to the analysis of bridge deck surface condition. Information such as the location, area, and volume of spalling on deck surfaces, undersides, and support columns can be derived from properly collected LiDAR point clouds. The LiDAR point clouds contain information that can provide quantitative surface condition information, resulting in more accurate structural health monitoring. LiDAR scans were collected at three study bridges, each of which displayed a varying degree of degradation. A variety of commercially available analysis tools and an independently developed algorithm written in ArcGIS Python (ArcPy) were used to locate and quantify surface defects such as location, volume, and area of spalls. The results were visual and numerically displayed in a user-friendly web-based decision support tool integrating prior bridge condition metrics for comparison. LiDAR data processing procedures along with strengths and limitations of point clouds for defining features useful for assessing bridge deck condition are discussed. Point cloud density and incidence angle are two attributes that must be managed carefully to ensure data collected are of high quality and useful for bridge condition evaluation. When collected properly to ensure effective evaluation of bridge surface condition, LiDAR data can be analyzed to provide a useful data set from which to derive bridge deck condition information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis represents the overview of hydrographic surveying and different types of modern and traditional surveying equipment, and data acquisition using the traditional single beam sonar system and a modern fully autonomous underwater vehicle, IVER3. During the thesis, the data sets were collected using the vehicles of the Great Lake Research Center at Michigan Technological University. This thesis also presents how to process and edit the bathymetric data on SonarWiz5. Moreover, the three dimensional models were created after importing the data sets in the same coordinate system. In these interpolated surfaces, the details and excavations can be easily seen on the surface models. In this study, the profiles are plotted on the surface models to compare the sensors and details on the seabed. It is shown that single beam sonar might miss some details, such as pipeline and quick elevation changes on the seabed when we compare to the side scan sonar of IVER3 because the single side scan sonar can acquire better resolution. However, sometimes using single beam sonar can save your project time and money because the single beam sonar is cheaper than side scan sonars and the processing might be easier than the side scan data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To correlate the dimension of the visual field (VF) tested by Goldman kinetic perimetry with the extent of visibility of the highly reflective layer between inner and outer segments of photoreceptors (IOS) seen in optical coherence tomography (OCT) images in patients with retinitis pigmentosa (RP). METHODS: In a retrospectively designed cross-sectional study, 18 eyes of 18 patients with RP were examined with OCT and Goldmann perimetry using test target I4e and compared with 18 eyes of 18 control subjects. A-scans of raw scan data of Stratus OCT images (Carl Zeiss Meditec, AG, Oberkochen, Germany) were quantitatively analyzed for the presence of the signal generated by the highly reflective layer between the IOS in OCT images. Starting in the fovea, the distance to which this signal was detectable was measured. Visual fields were analyzed by measuring the distance from the center point to isopter I4e. OCT and visual field data were analyzed in a clockwise fashion every 30 degrees , and corresponding measures were correlated. RESULTS: In corresponding alignments, the distance from the center point to isopter I4e and the distance to which the highly reflective signal from the IOS can be detected correlate significantly (r = 0.75, P < 0.0001). The greater the distance in VF, the greater the distance measured in OCT. CONCLUSIONS: The authors hypothesize that the retinal structure from which the highly reflective layer between the IOS emanates is of critical importance for visual and photoreceptor function. Further research is warranted to determine whether this may be useful as an objective marker of progression of retinal degeneration in patients with RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Approximately 90% of fine aerosol in the Midwestern United States has a regional component with a sizable fraction attributed to secondary production of organic aerosol (SOA). The Ozark Forest is an important source of biogenic SOA precursors like isoprene (> 150 mg m-2 d-1), monoterpenes (10-40 mg m-2 d-1), and sesquiterpenes (10-40 mg m-2d-1). Anthropogenic sources include secondary sulfate and nitrate and biomass burning (51-60%), vehicle emissions (17-26%), and industrial emissions (16-18%). Vehicle emissions are an important source of volatile and vapor-phase, semivolatile aliphatic and aromatic hydrocarbons that are important anthropogenic sources of SOA precursors. The short lifetime of SOA precursors and the complex mixture of functionalized oxidation products make rapid sampling, quantitative processing methods, and comprehensive organic molecular analysis essential elements of a comprehensive strategy to advance understanding of SOA formation pathways. Uncertainties in forecasting SOA production on regional scales are large and related to uncertainties in biogenic emission inventories and measurement of SOA yields under ambient conditions. This work presents a bottom-up approach to develop a conifer emission inventory based on foliar and cortical oleoresin composition, development of a model to estimate terpene and terpenoid signatures of foliar and bole emissions from conifers, development of processing and analytic techniques for comprehensive organic molecular characterization of SOA precursors and oxidation products, implementation of the high-volume sampling technique to measure OA and vapor-phase organic matter, and results from a 5 day field experiment conducted to evaluate temporal and diurnal trends in SOA precursors and oxidation products. A total of 98, 115, and 87 terpene and terpenoid species were identified and quantified in commercially available essential oils of Pinus sylvestris, Picea mariana, and Thuja occidentalis, respectively, by comprehensive, two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC × GC-ToF-MS). Analysis of the literature showed that cortical oleoresin composition was similar to foliar composition of the oldest branches. Our proposed conceptual model for estimation of signatures of terpene and terpenoid emissions from foliar and cortical oleoresin showed that emission potentials of the foliar and bole release pathways are dissimilar and should be considered for conifer species that develop resin blisters or are infested with herbivores or pathogens. Average derivatization efficiencies for Methods 1 and 2 were 87.9 and 114%, respectively. Despite the lower average derivatization efficiency of Method 1, distinct advantages included a greater certainty of derivatization yield for the entire suite of multi- and poly-functional species and fewer processing steps for sequential derivatization. Detection limits for Method 1 using GC × GC- ToF-MS were 0.09-1.89 ng μL-1. A theoretical retention index diagram was developed for a hypothetical GC × 2GC analysis of the complex mixture of SOA precursors and derivatized oxidation products. In general, species eluted (relative to the alkyl diester reference compounds) from the primary column (DB-210) in bands according to n and from the secondary columns (BPX90, SolGel-WAX) according to functionality, essentially making the GC × 2GC retention diagram a Carbon number-functionality grid. The species clustered into 35 groups by functionality and species within each group exhibited good separation by n. Average recoveries of n-alkanes and polyaromatic hydrocarbons (PAHs) by Soxhlet extraction of XAD-2 resin with dichloromethane were 80.1 ± 16.1 and 76.1 ± 17.5%, respectively. Vehicle emissions were the common source for HSVOCs [i.e., resolved alkanes, the unresolved complex mixture (UCM), alkylbenzenes, and 2- and 3-ring PAHs]. An absence of monoterpenes at 0600-1000 and high concentrations of monoterpenoids during the same period was indicative of substantial losses of monoterpenes overnight and the early morning hours. Post-collection, comprehensive organic molecular characterization of SOA precursors and products by GC × GC-ToFMS in ambient air collected with ~2 hr resolution is a promising method for determining biogenic and anthropogenic SOA yields that can be used to evaluate SOA formation models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Nonconvulsive status epilepticus (NCSE) is associated with a mortality rate of up to 18%, therefore requiring prompt diagnosis and treatment. Our aim was to evaluate the diagnostic value of perfusion CT (PCT) in the differential diagnosis of NCSE versus postictal states in patients presenting with persistent altered mental states after a preceding epileptic seizure. We hypothesized that regional cortical hyperperfusion can be measured by PCT in patients with NCSE, whereas it is not present in postictal states. MATERIALS AND METHODS: Nineteen patients with persistent altered mental status after a preceding epileptic seizure underwent PCT and electroencephalography (EEG). Patients were stratified as presenting with NCSE (n = 9) or a postictal state (n = 10) on the basis of clinical history and EEG data. Quantitative and visual analysis of the perfusion maps was performed. RESULTS: Patients during NCSE had significantly increased regional cerebral blood flow (P > .0001), increased regional cerebral blood volume (P > .001), and decreased (P > .001) mean transit time compared with the postictal state. Regional cortical hyperperfusion was depicted in 7/9 of patients with NCSE by ad hoc analysis of parametric perfusion maps during emergency conditions but was not a feature of postictal states. The areas of hyperperfusion were concordant with transient clinical symptoms and EEG topography in all cases. CONCLUSIONS: Visual analysis of perfusion maps detected regional hyperperfusion in NCSE with a sensitivity of 78%. The broad availability and short processing time of PCT in an emergency situation is a benefit compared with EEG. Consequently, the use of PCT in epilepsy may accelerate the diagnosis of NCSE. PCT may qualify as a complementary diagnostic tool to EEG in patients with persistent altered mental state after a preceding seizure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Music plays an important role in the daily life of cochlear implant (CI) users, but electrical hearing and speech processing pose challenges for enjoying music. Studies of unilateral CI (UCI) users' music perception have found that these subjects have little difficulty recognizing tempo and rhythm but great difficulty with pitch, interval and melody. The present study is an initial step towards understanding music perception in bilateral CI (BCI) users. The Munich Music Questionnaire was used to investigate music listening habits and enjoyment in 23 BCI users compared to 2 control groups: 23 UCI users and 23 normal-hearing (NH) listeners. Bilateral users appeared to have a number of advantages over unilateral users, though their enjoyment of music did not reach the level of NH listeners.