997 resultados para Viscosity value
Resumo:
We use conjoint choice questions to investigate people's tastes for cancer risk reductions and income in the context of public programs that would provide for remediation at abandoned industrial contaminated sites. Our survey was self-administered using the computer by persons living in the vicinity of an important contaminated site on the Italian National Priority List. The value of a prevented case of cancer is €2.6 million, but this figure does vary with income, perceived exposure to contaminants, and respondent opinions about priorities that should be pursued by cleanup programs. © 2011 Society for Risk Analysis.
Resumo:
Density, ?, viscosity, ?, and conductivity, s, measurements of binary mixtures containing the pyrrolidinium nitrate Protic Ionic Liquid (PIL) and propylene carbonate (PC), are determined at the atmospheric pressure as a function of the temperature from (283.15 to 353.15) K and within the whole composition range. The temperature dependence of both the viscosity and conductivity of each mixture exhibits a non-Arrhenius behaviour, but is correctly fitted by using the Vogel–Tamman–Fulcher (VTF) equation. In each case, the best-fit parameters, such as the pseudo activation energy, View the MathML source and ideal glass transition temperature, T0 are then extracted. The excess molar volumes VE, and viscosity deviations from the ideality, ??, of each investigated mixture were then deduced from the experimental results, as well as, their apparent molar volumes, V?, thermal expansion coefficients ap, and excess Gibbs free energies (?G*E) of activation of viscous flow. The VE, apE, ?? values are negative over the whole composition range for each studied temperature therein. According to the Walden rule, the ionicity of each mixture was then evaluated as a function of the temperature from (283.15 to 353.15) K and of the composition. Results have been then discussed in terms of molecular interactions and molecular structures in this binary mixture.
Resumo:
The two-phase flow of a hydrophobic ionic liquid and water was studied in capillaries made of three different materials (two types of Teflon, FEP and Tefzel, and glass) with sizes between 200µm and 270µm. The ionic liquid was 1-butyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}amide, with density and viscosity of 1420kgm and 0.041kgms, respectively. Flow patterns and pressure drop were measured for two inlet configurations (T- and Y-junction), for total flow rates of 0.065-214.9cmh and ionic liquid volume fractions from 0.05 to 0.8. The continuous phase in the glass capillary depended on the fluid that initially filled the channel. When water was introduced first, it became the continuous phase with the ionic liquid forming plugs or a mixture of plugs and drops within it. In the Teflon microchannels, the order that fluids were introduced did not affect the results and the ionic liquid was always the continuous phase. The main patterns observed were annular, plug, and drop flow. Pressure drop in the Teflon microchannels at a constant ionic liquid flow rate, was found to increase as the ionic liquid volume fraction decreased, and was always higher than the single phase ionic liquid value at the same flow rate as in the two-phase mixture. However, in the glass microchannel during plug flow with water as the continuous phase, pressure drop for a constant ionic liquid flow rate was always lower than the single phase ionic liquid value. A modified plug flow pressure drop model using a correlation for film thickness derived for the current fluids pair showed very good agreement with the experimental data. © 2013 Elsevier Ltd.
Resumo:
This paper introduces the paired comparison model as a suitable approach for the analysis of partially ranked data. For example, the Inglehart index, collected in international social surveys to examine shifts in post-materialistic values, generates such data on a set of attitude items. However, current analysis methods have failed to account for the complex shifts in individual item values, or to incorporate subject covariates. The paired comparison model is thus developed to allow for covariate subject effects at the individual level, and a reparameterization allows the inclusion of smooth non-linear effects of continuous covariates. The Inglehart index collected in the 1993 International Social Science Programme survey is analysed, and complex non-linear changes of item values with age, level of education and religion are identified. The model proposed provides a powerful tool for social scientists.
Resumo:
The drive towards cleaner industrial processes has led to the development of room temperature ionic liquids (RTIL) as environmentally friendly solvents. They comprise solely of ions which are liquid at room temperature and with over one million simple RTIL alone it is important to characterize their physical properties using minimal sample volumes. Here we present a dual Quartz Crystal Microbalance (QCM) which allows separate determination of viscosity and density using a total sample volume of only 240 mu L. Liquid traps were fabricated on the sensing area of one QCM using SU-8 10 polymer with a second QCM having a flat surface. Changes in the resonant frequencies were used to extract separate values for viscosity and density. Measurements of a range of pure RTIL with minimal water content have been made on five different trap designs. The best agreement with measurements from the larger volume techniques was obtained for trap widths of around 50 pm thus opening up the possibility of integration into lab-on-a-chip systems.
Resumo:
Nonsmall cell lung cancer samples from the European Early Lung Cancer biobank were analysed to assess the prognostic significance of mutations in the TP53, KRAS and EGFR genes. The series included 11 never-smokers, 86 former smokers, 152 current smokers and one patient without informed smoking status. There were 110 squamous cell carcinomas (SCCs), 133 adenocarcinomas (ADCs) and seven large cell carcinomas or mixed histologies. Expression of p53 was analysed by immunohistochemistry. DNA was extracted from frozen tumour tissues. TP53 mutations were detected in 48.8% of cases and were more frequent among SCCs than ADCs (p
Resumo:
Vertebroplasty is a minimally invasive surgical procedure, which requires efficacious percutaneous cement delivery via a cannulated needle to restore the strength and stiffness in osteoporotic vertebral bodies. Cement viscosity is understood to influence the injectability, cohesion and cement retention within the vertebral body. Altering the liquid to powder ratio modifies the viscosity of bone cement; however, the cement viscosity-response association between cement fill and augmentation of strength and stiffness is unknown. The aim of this study was to determine the relationship between viscosity, cement fill and the potential augmentation of strength and stiffness in an open pore foam structure that was representative of osteoporotic cancellous bone using an in vitro prophylactic vertebroplasty model. The results showed a strong linear correlation between compressive strength and stiffness augmentation with percentage cement fill, the extent of which was strongly dependent on the cement viscosity. Significant forces were required to ensure maximum delivery of the high viscosity cement using a proprietary screw-driven cement delivery technology. These forces could potentially exceed the normal human physical limit. Similar trends were observed when comparing the results from this study and previously reported cadaveric and animal based in vitro models.
Resumo:
We present in this work a comparative study on density and transport properties, such as the conductivity (sigma), viscosity (eta) and self-diffusion coefficients (D), for electrolytes based on the lithium hexafluorophosphate, LiPF6; or on the lithium tris(pentafluoroethane)-trifluorophosphate, LiFAP dissolved in a binary mixture of ethylene carbonate (EC) and dimethylcarbonate (DMC) (50:50 wt%). For each electrolyte, the temperature dependence on transport properties over a temperature range from 10 to 80 degrees C and 20 to 70 degrees C for viscosity and conductivity, respectively, exhibits a non-Arrhenius behavior. However, this dependence is correctly correlated by using the Vogel-Tamman-Fulcher (VTF) type fitting equation. In each case, the best-fit parameters, such as the pseudo activation energy and ideal glass transition temperature were then extracted. The self-diffusion coefficients (D) of the Li+ cation and PF6- or FAP(-) anions species, in each studied electrolyte, were then independently determined by observing Li-3, F-19 and P-31 nuclei with the pulsed-gradient spin-echo (PGSE) NMR technique over the same temperature range from 20 to 80 degrees C. Results show that even if the diffusion of the lithium cation is quite similar in both electrolytes, the anions diffusion differs notably. In the case of the LiPF6-based electrolyte, for example at T approximate to 75 degrees C (high temperature), the self-diffusion coefficients of Li+ cations in solution (D (Li+)approximate to 5 x 10(-19) m(2) s(-1)) is 1.6 times smaller than that of PF6- anions (D (PF6-) = 8.5 x 10(-19) m(2) s(-1)), whereas in the case of the LiFAP-based electrolyte, FAP(-) anions diffuse at same rate as the Li+ cations (D (FAP(-)) = 5 x 10(-1) m(2) s(-1)). Based on these experimental results, the transport mobility of ions were then investigated through Stokes-Einstein and Nernst-Einstein equations to determine the transport number of lithium t(Li)(+), effective radius of solvated Li+ and of PF6- and FAP(-) anions, and the degree of dissociation of these lithium salts in the selected EC/DMC (50:50 wt%) mixture over a the temperature range from 20 to 80 degrees C. This study demonstrates the conflicting nature of the requirements and the advantage of the well-balanced properties as ionic mobility and dissociation constant of the selected electrolytes. (C) 2013 Elsevier Ltd. All rights reserved.