997 resultados para Vibration isolation
Resumo:
A specimen of emollient cream, which was observed to be contaminated peripherally with a filamentous fungus was examined for the presence of fungi and the resulting fungal colonies were examined phenotypically and genotypically. Subsequent DNA extraction and PCR amplification of the large internal transcribed spacer region [ITS1-5.8S-ITS2] yielded an amplicon of 512 bp. Sequence analysis identified this as Alternaria alternata at the 100% homology level with all 512/512 bases called. This organism has been previously reported as a cause of opportunistic infections involving skin and immunocompromised patients. This is the first report of an emollient cream as a source of this organism. It highlights the need for proper management of such preparations in order to minimize the potential spread of fungi to susceptible patient populations.
Resumo:
Transplantation of hepatocytes or hepatocyte-like cells of extrahepatic origin is a promising strategy for treatment of acute and chronic liver failure. We examined possible utility of hepatocyte-like cells induced from bone marrow cells for such a purpose. Clonal cell lines were established from the bone marrow of two different rat strains. One of these cell lines, rBM25/S3 cells, grew rapidly (doubling time, approximately 24 hours) without any appreciable changes in cell properties for at least 300 population doubling levels over a period of 300 days, keeping normal diploid karyotype. The cells expressed CD29, CD44, CD49b, CD90, vimentin, and fibronectin but not CD45, indicating that they are of mesenchymal cell origin. When plated on Matrigel with hepatocyte growth factor and fibroblast growth factor-4, the cells efficiently differentiated into hepatocyte-like cells that expressed albumin, cytochrome P450 (CYP) 1A1, CYP1A2, glucose 6-phosphatase, tryptophane-2,3-dioxygenase, tyrosine aminotransferase, hepatocyte nuclear factor (HNF)1 alpha, and HNF4alpha. Intrasplenic transplantation of the differentiated cells prevented fatal liver failure in 90%-hepatectomized rats. In conclusion, a clonal stem cell line derived from adult rat bone marrow could differentiate into hepatocyte-like cells, and transplantation of the differentiated cells could prevent fatal liver failure in 90%-hepatectomized rats. The present results indicate a promising strategy for treating human fatal liver diseases.
Resumo:
Skin is a representative self-renewing tissue containing stem cells. Although many attempts have been made to define and isolate skin-derived stem cells, establishment of a simple and reliable isolation procedure remains a goal to be achieved. Here, we report the isolation of cells having stem cell properties from mouse embryonic skin using a simple selection method based on an assumption that stem cells may grow in an anchorage-independent manner. We inoculated single cell suspensions prepared from mouse embryonic dermis into a temperature-sensitive gel and propagated the resulting colonies in a monolayer culture. The cells named dermis-derived epithelial progenitor-1 (DEEP) showed epithelial morphology and grew rapidly to a more than 200 population doubling level over a period of 250 days. When the cells were kept confluent, they spontaneously formed spheroids and continuously grew even in spheroids. Immunostaining revealed that all of the clones were positive for the expression of cytokeratin-8, -18, -19, and E-cadherin and negative for the expression of cytokeratin-1, -5, -6, -14, -20, vimentin, nestin, a ckit. Furthermore, they expressed epithelial stem cell markers such as p63, integrin beta1, and S100A6. On exposure to TGFbeta in culture, some of DEEP-1 cells expressed alpha-smooth muscle actin. When the cells were transplanted into various organs of adult SCID mice, a part of the inoculated cell population acquired neural, hepatic, and renal cell properties. These results indicate that the cells we isolated were of epithelial stem cell origin and that our new approach is useful for isolation of multipotent stem cells from skin tissues.
Resumo:
s-Triazine herbicides are used extensively in South America in agriculture and forestry. In this study, a bacterium designated as strain MHP41, capable of degrading simazine and atrazine, was isolated from agricultural soil in the Quillota valley, central Chile. Strain MHP41 is able to grow in minimal medium, using simazine as the sole nitrogen source. In this medium, the bacterium exhibited a growth rate of mu = 0.10 h(-1), yielding a high biomass of 4.2 x 10(8) CFU mL(-1). Resting cells of strain MHP41 degrade more than 80% of simazine within 60 min. The atzA, atzB, atzC, atzD, atzE and atzF genes encoding the enzymes of the simazine upper and lower pathways were detected in strain MHP41. The motile Gram-negative bacterium was identified as a Pseudomonas sp., based on the Biolog microplate system and comparative sequence analyses of the 16S rRNA gene. Amplified ribosomal DNA restriction analysis allowed the differentiation of strain MHP41 from Pseudomonas sp. ADP. The comparative 16S rRNA gene sequence analyses suggested that strain MHP41 is closely related to Pseudomonas nitroreducens and Pseudomonas multiresinovorans. This is the first s-triazine-degrading bacterium isolated in South America. Strain MHP41 is a potential biocatalyst for the remediation of s-triazine-contaminated environments.
Resumo:
The aim of this study was to isolate and identify marine-derived bacteria which exhibited high tolerance to, and an ability to biodegrade, 1-alkyl-3-methylimidazolium chloride ionic liquids. The salinity and hydrocarbon load of some marine environments may induce selective pressures which enhance the ability of microbes to grow in the presence of these liquid salts. The isolates obtained in this study generally showed a greater ability to grow in the presence of the selected ionic liquids compared to microorganisms described previously, with two marine-derived bacteria, Rhodococcus erythropolis and Brevibacterium sanguinis growing in concentrations exceeding 1 M 1-ethyl-3-methylimidazolium chloride. The ability of these bacteria to degrade the selected ionic liquids was assessed using High Performance Liquid Chromatography (HPLC), and three were shown to degrade the selected ionic liquids by up to 59% over a 63-day test period. These bacterial isolates represent excellent candidates for further potential applications in the bioremediation of ionic liquid-containing waste or following accidental environmental exposure.
Resumo:
In the present study, we examined the possible utility of a three-dimensional culture system using a thermo-reversible gelation polymer to isolate and expand neural stem cells (NSCs). The polymer is a synthetic biologically inert polymer and gelates at temperatures higher than the gel-sol transition point ( approximately 20 degrees C). When fetal mouse brain cells were inoculated into the gel, spherical colonies were formed ( approximately 1% in primary culture and approximately 9% in passage cultures). The spheroid-forming cells were positive for expression of the NSC markers nestin and Musashi. Under conditions facilitating spontaneous neural differentiation, the spheroid-forming cells expressed genes characteristic to astrocytes, oligodendrocytes, and neurons. The cells could be successively propagated at least to 80 poly-D-lysines over a period of 20 weeks in the gel culture with a growth rate higher than that observed in suspension culture. The spheroids formed by fetal mouse brain cells in the gel were shown to be of clonal origin. These results indicate that the spheroid culture system is a convenient and powerful tool for isolation and clonal expansion of NSCs in vitro.
Resumo:
Campylobacter jejuni (C. jejuni) is one of the leading causes of bacterial food-borne disease worldwide. The presence of Campylobacter in chicken feces poses a high risk for contamination of chicken meat and for Campylobacter infections in human. Detection of this bacterium in chicken fecal specimens before slaughter is therefore vital to prevent disease transmission. By combining two techniques – immunomagnetic separation (IMS) and polymerase chain reaction (PCR), this study developed a reliable and specific method for rapid detection of C. jejuni in chicken fecal samples. The specificity of the assay was assured by two selection steps: 1) Dynabeads®M-270 Amine microbeads (2.8 µm in diameter) coated with C. jejuni monoclonal antibodies were used as the primary selection to isolate bacteria from fecal samples. 2) A PCR assay amplifying the Hippuricase gene was performed as the specific selection to accurately confirm the presence of C. jejuni. Without pre-enrichment, this method was able to detect approximately 10 CFU of C. jejuni in 1 µl of spiked feces within 3 h.
Resumo:
Molecularly Imprinted Polymers (MIPs) targeting shikonin, a potent antioxidant and wound healing agent, have been prepared using methacrylic acid (MAA) and 2-diethylaminoethyl methacrylate (DEAEMA) as functional monomers. An investigation of solution association between shikonin and both acidic and basic functional monomers by UV-Vis titrations, suggested stronger affinity towards the basic functionality. Strong inhibition of the co-polymerisation reaction of such basic monomers was observed, but was overcome by reduction of the amount of template used during polymer synthesis. Polymer morphology was severely impacted by the template’s radical scavenging behaviour as demonstrated by solid state NMR spectroscopy measurements. HPLC evaluation of the final materials in polar conditions revealed limited imprinting effects and selectivity, with the MAA polymers exhibiting marginally better performance. During application of the polymers as MI-SPE sorbents in non-polar solvents it was found that the DEAEMA based polymer was more selective towards shikonin compared to the MAA counterpart, while shikonin recoveries of up to 72% were achieved from hexane solutions of a commercial sample of shikonin, hexane extract of Alkanna tinctoria roots and a commercial pharmaceutical ointment.
Resumo:
Natural ecosystems are increasingly exposed to multiple anthropogenic stressors, including land-use change, deforestation, agricultural intensification, and urbanisation, all of which have led to widespread habitat fragmentation, which is also likely to be amplified further by predicted climate change. The potential interactive effects of these different stressors cannot be determined by studying each in isolation, although such synergies have been largely ignored in ecological field studies to date. Here, we use a model system of naturally fragmented islands in a braided river network, which is exposed to periodic inundation, to investigate the interactive effects of habitat isolation and flood disturbance. Food web structure was similar across the islands during periods of hydrological stability, but several key properties were altered in the aftermath of flood disturbance, based on distance of the islands from the regional source pool of species: taxon richness and mean food chain length declined with habitat isolation after flooding, while the proportion of basal species increased. Greater species turnover through time reflected the slower process of re-colonisation on the more distant islands following disturbance. Increased variability of several food web properties over a 1-year period highlighted the reduced temporal stability of isolated habitat fragments. Many of these effects reflected the differential successes of predator and prey species at re-colonising the islands: even though larger, more mobile consumers may reach the more distant islands first, they cannot establish populations until the lower trophic levels have successfully reassembled. These results highlight the susceptibility of fragmented ecosystems to environmental perturbations. © 2013 Elsevier Ltd.
Resumo:
Cytosolic phospholipase A2 (cPLA2) releases arachidonic acid from membrane phospholipids and is believed to be the rate-limiting enzyme in the arachidonic acid pathway. We report herein the isolation of a 3 kb fragment of rodent genomic DNA containing part of the first intron, the first exon and 5'-flanking sequence. The start site of transcription was mapped by 5'-rapid amplification of cDNA ends and corroborated by ribonuclease protection assay. The gene has a TATAless promoter with no classical Sp1 binding sites or initiator element. A microsatellite series of CA repeats was noted in the 5'-flanking region of both the rodent and human promoters. Deletion constructs have been analysed for luciferase activity and confirmed promoter activity.
Resumo:
An approach for seismic damage identification of a single-storey steel concentrically braced frame (CBF) structure is presented through filtering and double integration of a recorded acceleration signal. A band-pass filter removes noise from the acceleration signal followed by baseline correction being used to reduce the drift in velocity and displacement during numerical integration. The pre-processing achieves reliable numerical integration that predicts the displacement response accurately when compared to the measured lateral in-plane displacement of the CBF structure. The lateral displacement of the CBF structure is used to infer buckling and yielding of bracing members through seismic tests. The level of interstorey drift of the CBF during a seismic excitation allows the yield and buckling of the bracing members to be identified and indirectly detects damage based on exceedance of calculated displacement limits. The calculated buckling and yielding displacement threshold limits used to identify damage are demonstrated to accurately identify initial buckling and yielding in the bracing members.
Resumo:
This paper investigates a wavelet-based damage detection approach for bridge structures. By analysing the continuous wavelet transform of the vehicle response, the approach aims to identify changes in the bridge response which may indicate the existence of damage. A numerical vehicle-bridge interaction model is used in simulations as part of a sensitivity study. Furthermore, a laboratory experiment is carried out to investigate the effects of varying vehicle configuration, speed and bridge damping on the ability of the vehicle to detect changes in the bridge response. The accelerations of the vehicle and bridge are processed using a continuous wavelet transform, allowing time-frequency analysis to be carried out on the responses of the laboratory vehicle-bridge interaction system. Results indicate the most favourable conditions for successful implementation of the approach.