983 resultados para Ventricular Dysfunction, Left


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertrophic cardiomyopathy (HCM) is the most common heart disease in the feline specie, more frequently affecting pure-breed males such as Ragdolls and Maine Coons. HCM can be primary (idiopathic) or secondary, when other diseases such as hyperthyroidism are involved. The disease is characterized by an increase in the diameter and thickness of the left ventricular wall, with consequent diastolic dysfunction. Mitral regurgitation happens due to compromised ventricular filling, leading to an increased left atrium size and consequent cardiogenic pulmonary edema. Along with the progress of modern veterinary medicine, many diseases could be addressed more successfully on small animal internal medicine, such as feline HCM. This article brings a literature review of the feline hypertrophic cardiomyopathy, focusing on its etiology, physiopathology, clinical presentations, diagnostic methods, therapeutics and prognosis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Cirurgia Veterinária - FCAV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aging spontaneously hypertensive rat (SHR) is a model in which the transition from chronic stable left ventricular hypertrophy to overt heart failure can be observed. Although the mechanisms for impaired function in hypertrophied and failing cardiac muscle from the SHR have been studied, none accounts fully for the myocardial contractile abnormalities. The cardiac cytoskeleton has been implicated as a possible cause for myocardial dysfunction. If an increase in microtubules contributes to dysfunction, then myocardial microtubule disruption by colchicine should promote an improvement in cardiac performance. We studied the active and passive properties of isolated left ventricular papillary muscles from 18- to 24-month-old SHR with evidence of heart failure (SHR-F, n=6), age-matched SHR without heart failure (SHR-NF, n=6), and age-matched normotensive Wistar-Kyoto rats (WKY, n=5). Mechanical parameters were analyzed before and up to 90 minutes after the addition of colchicine (10(-5), 10(-4), and 10(-3) mol/L). In the baseline state, active tension (AT) developed by papillary muscles from the WKY group was greater than for SHR-NF and SHR-F groups (WKY 5.69+/-1.47 g/mm2 [mean+/-SD], SHR-NF 3.41+/-1.05, SHR-F 2.87+/-0.26; SHR-NF and SHR-F P<0.05 versus WKY rats). The passive stiffness was greater in SHR-F than in the WKY and SHR-NF groups (central segment exponential stiffness constant, Kcs: SHR-F 70+/-25, SHR-NF 44+/-17, WKY 41+/-13 [mean+/-SD]; SHR-F P<0.05 versus SHR-NF and WKY rats). AT did not improve after 10, 20, and 30 minutes of exposure to colchicine (10(-5), 10(-4), and 10(-3) mol/L) in any group. In the SHR-F group, AT and passive stiffness did not change after 30 to 90 minutes of colchicine exposure (10(-4) mol/L). In summary, the data in this study fail to demonstrate improvement of intrinsic muscle function in SHR with heart failure after colchicine. Thus, in the SHR there is no evidence that colchicine-induced cardiac microtubular depolymerization affects the active or passive properties of hypertrophied or failing left ventricular myocardium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study assessed the effects of Water training on the lipid profile and left ventricular structures in hyperlipidemic mice. Twenty-eight male LDLr-/- mice were randomly separated into 4 groups: sedentary, fed a standard diet (C); exercising, fed a standard diet (C+TRE); sedentary, fed a hyperlipidic diet (C+HL); and exercising, fed a hyperlipidic diet (E+HL). The exercising mice trained daily for 60 minutes during 60 days. After 48 hours of the end of the training period and 12 hours of rest fasting the animals were underwent euthanasia and the blood was collected for measuring the plasma levels of triglycerides, total cholesterol and its fractions (LDL, HDL, VLDL). The heart was removed and the left ventricle was weighed fresh to calculate the ratio left-ventricle weight (mg)/body weight (g). The results showed that the training was more effective in improving lipid plasma levels when combined with a balanced diet, thereby confirming that it is essential to associate physical exercise and diet. The training protocol resulted in eccentric left ventricular hypertrophy in the standard-diet group and decreased interstitial collagen deposition in the myocardium of the high-fat-diet animals, which may indicate an improved diastolic function with consequent improvement in the systolic function. It was concluded that regular moderate aerobic exercise induce beneficial and prophylactic adaptations to heart which promoted a better health condition and prevention to diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background: Several mechanisms have been proposed to contribute to cardiac dysfunction in obesity models, such as alterations in calcium (Ca2+) handling proteins and β-adrenergic receptors. Nevertheless, the role of these factors in the development of myocardial dysfunction induced by obesity is still not clear. Objective: The purpose of this study was to investigate whether obesity induced by hypercaloric diets results in cardiac dysfunction. Furthermore, it was evaluated whether this functional abnormality in obese rats is related to abnormal Ca2+ handling and the β-adrenoceptor system. Methods: Male 30-day-old Wistar rats were fed with standard food (C) and a cycle of five hypercaloric diets (Ob) for 15 weeks. Obesity was defined as increases in body fat percentage in rats. Cardiac function was evaluated by isolated analysis of the left ventricle papillary muscle under basal conditions and after inotropic and lusitropic maneuvers. Results: Compared with the control group, the obese rats had increased body fat and glucose intolerance. The muscles of obese rats developed similar baseline data, but the myocardial responsiveness to post-rest contraction stimulus and increased extracellular Ca2+ were compromised. There were no changes in cardiac function between groups after β-adrenergic stimulation. Conclusion: Obesity promotes cardiac dysfunction related to changes in intracellular Ca2+ handling. This functional damage is probably caused by reduced cardiac sarcoplasmic reticulum Ca2+ ATPase (SERCA2) activation via Ca2+ calmodulin kinase. (Arq Bras Cardiol 2011; 97(3) : 232-240).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Biologia Geral e Aplicada - IBB

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Fisiopatologia em Clínica Médica - FMB