890 resultados para VITAMIN-B1
Resumo:
Ascorbate can act as both a reducing and oxidising agent in vitro depending on its environment. It can modulate the intracellular redox environment of cells and therefore is predicted to modulate thiol-dependent cell signalling and gene expression pathways. Using proteomic analysis of vitamin C-treated T cells in vitro, we have previously reported changes in expression of five functional protein groups associated with signalling, carbohydrate metabolism, apoptosis, transcription and immune function. The increased expression of the signalling molecule phosphatidylinositol transfer protein (PITP) was also confirmed using Western blotting. Herein, we have compared protein changes elicited by ascorbate in vitro, with the effect of ascorbate on plasma potassium levels, on peripheral blood mononuclear cell (PBMC) apoptosis and PITP expression, in patients supplemented with vitamin C (0-2 g/d) for up to 10 weeks to investigate whether in vitro model systems are predictive of in vivo effects. PITP varied in expression widely between subjects at all time-points analysed but was increased by supplementation with 2 g ascorbate/d after 5 and 10 weeks. No effects on plasma potassium levels were observed in supplemented subjects despite a reduction of K+ channel proteins in ascorbate-treated T cells in vitro. Similarly, no effect of vitamin C supplementation on PBMC apoptosis was observed, whilst ascorbate decreased expression of caspase 3 recruitment domain protein in vitro. These data provide one of the first demonstrations that proteomics may be valuable in developing predictive markers of nutrient effects in vivo and may identify novel pathways for studying mechanisms of action in vivo.
Resumo:
Monocyte recruitment and retention in the vasculature is influenced by oxidative stress and is involved in cardiovascular disease (CVD). Individuals with low plasma ascorbate are at elevated risk of CVD. It is unknown whether vitamin C supplementation affects monocyte adhesion to endothelial cells (ECs) in healthy non-smokers. In a randomised double-blind crossover study the effect of vitamin C supplementation (six weeks, 250 mg/day) was determined in subjects with normal (HIC) and below average (LOC) plasma vitamin C concentration at baseline (mean = 67μM, n = 20, mean = 32μM, n = 20, respectively). LOC subjects showed 30% greater monocyte adhesion to ECs. This was significantly reduced by 37% (P < 0.02) following vitamin C supplementation to levels of HIC monocyte adhesion. No differences in plasma malondialdehyde concentrations were observed between groups or after supplementation. In conclusion, vitamin C supplementation normalises monocyte adhesion in subjects with low plasma vitamin C (LOC). This process may be related to a direct effect on monocytes, independent of lipid peroxidation. © 2002 Elsevier Science (USA). All rights reserved.
Resumo:
We have investigated vitamin C supplementation effects on immunoglobulin oxidation (carbonyls) and total plasma protein sulfhydryls in healthy human volunteers. After receiving placebo, plasma ascorbate and oxidation markers were unchanged. Following 5 weeks supplementation with vitamin C (400 mg/day), plasma ascorbate increased but no significant effect on protein oxidation was observed. At 10 and 15 weeks supplementation, carbonyl levels were significantly reduced (P < 0.01) in subjects with low baseline ascorbate (29.51 ± 5.3 μM) but not in those with normal baseline ascorbate (51.81 ± 2.3 μM). To eliminate any effect from seasonal variation in dietary antioxidant intake, a second phase was undertaken. Subjects on vitamin C for 15 weeks were randomly assigned to receive either placebo or vitamin C. No difference in plasma sulfhydryl content was observed. Subjects withdrawn from supplementation showed an increase in immunoglobulin carbonyl content (P < 0.01). This demonstrates that dietary vitamin C supplementation can reduce certain types of oxidative protein damage in subjects with low basal antioxidant. (C) 2000 Academic Press.
Resumo:
There appears to be a paucity of data examining the effect of dietary antioxidants on levels of oxidative DNA damage in vivo, limiting evidence-based assessment of antioxidant efficacy, mechanisms and recommendation for optimal intake. We have examined levels of 8-oxo-2'-deoxyguanosine (8-oxodG) in mononuclear cell DNA, serum and urine from subjects undergoing supplementation with 500 mg/day vitamin C. Significant decreases in DNA levels of 8-oxodG were seen, correlating strongly with increases in plasma vitamin C concentration. Furthermore we established a timecourse for sequential, significant increases in serum and urinary 8-oxodG levels. These results illustrate, for the first time in humans, the kinetics of 8-oxodG removal and processing in vivo, suggesting a role for vitamin C in the regulation of DNA repair enzymes and thereby demonstrating a non-scavenging antioxidant effect.
Resumo:
Vitamin C is marketed as a dietary supplement, partly because of its 'antioxidant' properties. However, we report here that vitamin C administered as a dietary supplement to healthy humans exhibits a pro-oxidant, as well as an antioxidant, effect in vivo.
Resumo:
Regulation of monocyte adhesion molecule gene expression is via redox sensitive transcription factors. We have investigated whether dietary antioxidant supplementation with vitamin C (250mg/day) can modulate monocyte ICAM-1 expression in healthy male subjects with low plasma vitamin C at baseline. In a randomised, double-blind, crossover study, monocyte ICAM-1 mRNA was analysed using quantitative reverse transcriptase PCR. Protein was determined by flow cytometry (monocytes) and ELISA (plasma). Monocyte numbers were unaltered by supplementation. Subjects with low plasma vitamin C (<50μM) prior to supplementation expressed higher levels of monocyte ICAM-1mRNA, and showed a significant (50%) reduction in ICAM-1mRNA expression after 6 weeks of 250mg/day vitamin C supplementation (p<0.05). This was paralleled by a reduction in sICAM-1 (p<0.05). For the first time, these results show that dietary vitamin C can modulate monocyte ICAM-1 gene expression in vivo, where regulation of gene expression represents a novel mechanism for benefit from dietary antioxidants. © 2003 Elsevier Inc. All rights reserved.
Resumo:
Monocytes play a central role in inflammatory responses through systemic antigen presentation and cytokine secretion. Regulation of monocyte adhesion molecule and inflammatory gene expression is via redox sensitive transcription factors. Therefore we have investigated the hypothesis that dietary antioxidant supplementation with vitamins C (250mg/d) or E (400iU/d) for six weeks can modulate monocyte ICAM-1 expression in healthy male subjects with low plasma vitamin C at baseline. In a randomised, double-blind, crossover study, ICAM-1 mRNA and protein was analysed using quantitative RTPCR with ELISA measurement of PCR products and by flow cytometry and ELISA respectively. Monocyte numbers were unaltered by supplementation. Subjects with low plasma vitamin C (<50uM) prior to supplementation expressed higher levels of monocyte ICAM-1 mRNA, and showed a significant (50%) reduction in ICAM-1 mRNA expression after 6 weeks of 250mg/d vitamin C supplementation compared to subjects with normal plasma vitamin C. This was paralleled by a reduction in plasma sICAM-1. Vitamin E supplementation had no effect on ICAM-1 expression. For the first time, these results show that dietary vitamin C can modulate monocyte ICAM-1 gene expression in vivo, where regulation of gene expression represents a novel mechanism for benefit from dietary antioxidants.
Resumo:
Oxidative DNA damage is postulated to be involved in carcinogenesis, and as a consequence, dietary antioxidants have received much interest. A recent report indicates that vitamin C facilitates the decomposition of hydroperoxides in vitro, generating reactive aldehydes. We present evidence for the in vivo generation of glyoxal, an established product of lipid peroxidation, glucose/ascorbate autoxidation, or free radical attack of deoxyribose, following supplementation of volunteers with 400 mg/d vitamin C. Utilizing a monoclonal antibody to a deoxycytidine-glyoxal adduct (gdC), we measured DNA lesion levels in peripheral blood mononuclear cells. Supplementation resulted in significant (p = .001) increases in gdC levels at weeks 11, 16, and 21, with corresponding increases in plasma malondialdehyde levels and, coupled with previous findings, is strongly suggestive of a pro-oxidative effect. However, continued supplementation revealed a highly significant (p = .0001) reduction in gdC levels. Simultaneous analysis of cyclobutane thymine dimers revealed no increase upon supplementation but, as with gdC, levels decreased. Although no single mechanism is identified, our data demonstrate a pro-oxidant event in the generation of reactive aldehydes following vitamin C supplementation in vivo. These results are also consistent with our hypothesis for a role of vitamin C in an adaptive/repair response and indicate that nucleotide excision repair specifically may be affected. © 2003 Elsevier Science Inc.
Resumo:
Vitamin and mineral deficiencies are common in developing countries, but also occur in developed countries. We review micronutrient deficiencies for the major vitamins A, cobalamin (B-12), biotin (vitamin H), vitamins C and E, as well as the minerals iron, and zinc, in the developed world, in terms of their relationship to systemic health and any resulting ocular disease and/or visual dysfunction. A knowledge of these effects is important as individuals with consequent poor ocular health and reduced visual function may present for ophthalmic care.
Resumo:
Polymers are subject to oxidation throughout their lifecycle. Antioxidants are generally incorporated in polymers to inhibit or minimise oxidative degradation. Hindered phenolic antioxidants are important stabilisers for polyolefins. However, hindered phenols undergo chemical transformations while performing their antioxidant function during processing and fabrication. In addition, antioxidants are subject to loss from polymers during processing, or subsequently in-service. Migration of antioxidants is a major concern in applications involving polymers in direct contact with food and human environment. This concern is compounded by the realisation that very little is known about the nature and the migration behaviour of antioxidant transformation products. In this work, the antioxidant role of the biological antioxidant -tocopherol (Vitamin E) , which is structurally similar to many synthetic hindered phenols, is investigated in low density polyethylene (LDPE) and polypropylene (PP). The melt stabilising effectiveness of -tocopherol (Toc) was found to be very high, higher than that of commercial hindered phenol antioxidants, such as Irganox 1076 (Irg 1076) and Irganox 1010 (Irg 1010), after multiple extrusions, especially at very low concentrations. The high antioxidant activity of Toc was shown to be due, at least in part, to the formation of transformation products during processing. The main products formed are stereoisomers of dimers and trimers, as well as aldehydes and a quinone - the relative concentration of each was shown to depend on the processing severity, the initial antioxidant concentration and oxygen availability. These transformation products are shown to impart better, similar or lower melt stability to the polymer than the parent antioxidant. The nature of the products formed from Toc during processing was compared with those formed during processing of Irg 1076 and Irg 1010 with LDPE and a mechanism for the melt stabilisation of Toc was proposed and compared with the stabilisation mechanisms of the synthetic antioxidants Irg 1076 and Irg 1010.