997 resultados para V-gamma dimension.
Resumo:
The protective role of Cyclophosphamide was studied in this work. Young male Calomys callosus were infected with Trypanosoma cruzi and allowed to age. Cyclophosphamide therapy was administered to animals during acute and late chronic phases of infection. Esophageal neurons were counted, displaying enhanced neuronal loss for the young and treated infected groups. For aged and cyclophosphamide treated animals, a protection was observed through a reduced loss of neurons as compared to the young and infected groups. Enhanced nitric oxide concentrations were observed for young animals as compared to aged counterparts. Splenocyte proliferation was reduced during the acute phase in comparison with those found in the chronic phase. Morphometry of neuronal body displayed a significant reduction concerning the area, perimeter, diameter and volume for aged animals as compared to young groups. These results indicate that the protective effects of cyclophosphamide together with process of neuroplasty of peripheral nervous system could lead to a protection against neuronal loss.
Resumo:
Pro-inflammatory and modulatory cytokines have an essential role in host defense against human and murine Trypanosoma cruzi infection. Control of T. cruzi parasitism during the acute phase of infection is considered to be critically dependent on direct macrophage activation by cytokines. Melatonin has been proposed to regulate the immune system by affecting cytokine production in immunocompetent cells, enhancing the production of several T helper (Th)1 cytokines. The aims of this work were to evaluate in rats, the influences of exogenous melatonin treatment on T. cruzi-infected host`s immune responses. With this in mind, several immunological parameters were analyzed, including tumor necrosis factor-alpha, gamma-interferon, interleukin-12, nitric oxide (NO) and macrophage count. The melatonin therapy was provided in one of two different treatment regimens, that is, either beginning 7 days prior to infection or concomitant with the infection. Both treatments triggered an up-regulation of the immune response, with the concomitant treatment being more effective; in this case all cytokines studied, with exception of NO, displayed enhanced concentrations and there was a higher number of peritoneal macrophages, which displayed reduced concentrations under melatonin therapy. We conclude that melatonin plays a pivotal role in up-regulating the Th1 immune response thus controlling parasite replication.
Resumo:
It is well recognized that zinc is an essential trace element for all organisms, influencing growth and affecting the development and integrity of the immune system. It is also well known that the protective response against Trypanosoma cruzi depends on both innate and acquired immunity and for the control of the parasite load and host survival, the participation of special cells such natural killer (NK), T and B lymphocytes and macrophages are required. So the aims of this study were to evaluate the effects of zinc supplementation on the host`s immune response infected with T cruzi. Our data point in the direction that zinc supplementation triggered enhanced thymocyte and splenocyte proliferation as compared to unsupplied group of animals. It is also important to emphasize that interleukin-12 (IL-12) participates in the resistance to several intracellular pathogens including T cruzi. Our findings demonstrate an enhanced production of IL-12 during the acute phase of infection in zinc-supplied groups. So we conclude that zinc supplementation leads to an effective host`s immune response by up-modulating the host`s immune response, thus contributing in the reduction of blood parasites and the harmful pathogenic effects of the experimental Chagas` disease. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Dehydroepiandrosterone (DHEA) enhances immune responses against a wide range of viral, bacterial, and parasitic pathogens. In a previous study, we reported that administration of DHEA significantly decreased the numbers of blood parasites in Trypanosoma cruzi experimental infection. The present study was undertaken to determine the effectiveness of DHEA in reducing the severity of acute phase T cruzi infection of male and female Wistar rats. Animals were treated subcutaneously with 40 mg/kg body weight/day of DHEA. The concentration of nitric oxide (NO) was determined in spleen peritoneal cavity. Interleukin-2 (IL-2) and interferon-gamma (IFN-gamma) were determined in the sera of uninfected and infected animals. DHEA treatment augments NO production for both sexes after in vitro LPS treatment for uninfected animals. Infection triggered enhanced NO levels although not significant. IL-2 and IFN-gamma were detectable in higher concentrations in treated and infected rats of both genders when compared to untreated controls. These data suggest that DHEA may have a potent immunoregulatory function that can affect the course of T cruzi infection. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
it is well recognized that zinc is an essential trace element, influencing growth and affecting the development and integrity of the immune system. The use of oligoelements as zinc can be considered a tool in modulating the effectiveness of the immune response. In this work zinc was daily and orally supplied in male Wistar rats infected with the Y strain of Trypanosoma cruzi. Parasiternia was evaluated and a significant reduction on blood parasites was observed. In order to check some immunological parameters peritoneal macrophages were counted revealing higher percentages for zinc supplied group. Consequently enhanced concentrations of IFN-gamma was found and for the first time NO was evaluated in T cruzi infected animals under the influence of zinc therapy, revealing enhanced concentrations when compared to. unsupplied counterparts. We conclude that zinc is able to up-regulate the host`s immune response against parasite replication. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
A proteinase, named BmooMP alpha-I, from the venom of Bothrops moojeni, was purified by DEAE-Sephacel, Sephadex G-75 and heparin-agarose column chromatography. The enzyme was purified to homogeneity as judged by its migration profile in SDS-PAGE stained with coomassie blue, and showed a molecular mass of about 24.5 kDa. Its complete cDNA was obtained by RT-PCR and the 615 bp codified for a mature protein of 205 amino acid residues. The multiple alignment of its deduced amino acid sequence and those of other snake venom metalloproteinases showed a high structural similarly, mainly among class P-IB proteases. The enzyme cleaves the A alpha-chain of fibrinogen first, followed by the B beta-chain, and shows no effects on the gamma-chain. On fibrin, the enzyme hydrolyzed only the beta-chain, leaving the gamma-dimer apparently untouched. It was devoid of phospholipase A(2), hemorrhagic and thrombin-like activities. Like many venom enzymes, it is stable at pH values between 4 and 10 and stable at 70 degrees C for 15 min. The inhibitory effects of EDTA on the fibrinogenolytic activity suggest that BmooMP alpha-I is a metalloproteinase and inhibition by beta-mercaptoethanol revealed the important role of the disulfide bonds in the stabilization of the native structure. Aprotinin and benzamidine, specific serine proteinase inhibitors, had no effect on BmooMP alpha-I activity. Since the BmooMP alpha-I enzyme was found to cause defibrinogenation when administered i.p. on mice, it is expected that it may be of medical interest as a therapeutic agent in the treatment and prevention of arterial thrombosis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Galectin-1 (Gal-1) and galectin-3 (Gal-3) exhibit profound but unique immunomodulatory activities in animals but their molecular mechanisms are incompletely understood. Early studies suggested that Gal-1 inhibits leukocyte function by inducing apoptotic cell death and removal, but recent studies show that some galectins induce exposure of the common death signal phosphatidylserine (PS) independently of apoptosis. In tfhis study, we report that Gal-3, but not Gal-1, induces both PS exposure and apoptosis in primary activated human T cells, whereas both Gal-1 and Gal-3 induce PS exposure in neutrophils in the absence of cell death. Gal-1 and Gal-3 bind differently to the surfaces of T cells and only Gal-3 mobilizes intracellular Ca(2+) in these cells, although Gal-1 and Gal-3 bind their respective T cell ligands with similar affinities. Although Gal-1 does not alter T cell viability, it induces IL-10 production and attenuates IFN-gamma production in activated T cells, suggesting a mechanism for Gal-1-mediated immunosuppression in vivo. These studies demonstrate that Gal-1 and Gal-3 induce differential responses in T cells and neutrophils, and identify the first factor, Gal-3, capable of inducing PS exposure with or without accompanying apoptosis in different leukocytes, thus providing a possible mechanism for galectin-mediated immunomodulation in vivo.
Resumo:
DHEA, a steroid hormone synthesized from cholesterol by cells of the adrenal cortex, plays an essential role in enhancing the host`s resistance to different experimental infections. Receptors for this hormone can be found in distinct immune cells (especially macrophages) that are known to be the first line defense against Trypanosoma cruzi infection. These cells operate through an indirect pathway releasing nitric oxide (NO) and cytokines such TNF-alpha and IL-12 which in turn trigger an enhancement of natural killer cells and lymphocytes which finally secrete pro and anti-inflammatory cytokines. The effects of pre- and post-infection DHEA treatment on production of IL-12, TNF alpha and NO were evaluated. T. cruzi infected macrophages post treated with DHEA displayed enhanced concentrations of TNF-alpha, IL-12 and NO. Probably, the mechanisms that induced the production of cytokines by infected cells are more efficient when the immune system has been stimulated first by parasite invasion, suggesting that the protective role of DHEA is greater when administered post infection. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The present research investigated the influence of temperature and time of larvae culture on the infectivity of Strongyloides venezuelensis. Mice were infected s.c. with 1500 larvae of S. venezuelensis maintained at 28 degrees C for three days of culture (dc), 28 degrees C for seven dc or 18 degrees C for seven dc. On days 1,3, 5, 7, 14 and 21 post-infection the animals were sacrificed and cell numbers in the blood, peritoneal cavity fluid (PCF), broncoalveolar fluid (BALF), cytokines, immunoglobulins, number of parasites and eggs/g of feces were quantified. Results demonstrated an increase in eosinophils and mononuclear cells in the blood, PCF and HALF of infected mice. Larvae at 28 degrees C/3dc induced earlier eosinophils in the PCF and HALF as opposed to larvae at 28 degrees C/7dc and 18 degrees C/7dc. Larvae at 28 degrees C/7dc induced higher synthesis of IL-4. IL-5 and IL-10 on days Sand 7 post-infection. Larvae at 28 degrees C/3dc in culture induced higher synthesis of IL-12 than larvae of seven dc, but time in culture induced better synthesis of IFN-gamma, after larval migration had ceased and only adult worms were present. Larvae at 28 degrees C/3dc in culture induced higher synthesis of IgG and IgG1 and expelled less female parasites than larvae cultivated for seven days. In conclusion, it was observed that the infectivity of S. venezuelensis is influenced by variations in temperature and time of culture. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
A significant role for hormones in regulating the balance of Th1- and Th2-associated cytokines with a role in modulating diseases has been accumulating. Previously, we reported that dehydroepiandrosterone (DHEA), the most abundant steroid hormone synthesized by the adrenal cortex, markedly reduced the blood and tissue parasites in experimentally Trypanosoma cruzi-infected rats. Based on these findings, the main purpose of this study was to investigate the effect of dehydroepiandrosterone-sulfate ester (DHEA-S) therapy alone or in combination with benznidazole (BNZ) (recommended in Brazil for the treatment of T. cruzi infection) will be effective during the acute phase of two different lineages of T. cruzi strains: type I (Y strain) and type II (Bolivia strain) of T. cruzi. Administration of either DHEA-S or BNZ alone or in combination significantly reduced the Y strain parasite load as compared with untreated. Furthermore treatment with DHEA-S resulted in Bolivia strain clearance. This protective effect of DHEA-S was associated with the host`s immune response, as evidence by enhanced levels of interferon-gamma and interleukin-2. DHEA-S treatment also increased peritoneal macrophages levels and nitrite production. DHEA-S treatment was effective in reducing the mortality rate as compared to BNZ alone or to combiner DHEA-S+BNZ treatment of T. cruzi Bolivia strain infected animals. These findings suggest that hormonal therapy may have a protective effect in the treatment of T. cruzi infection. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
P>With the evidence showing the protection variability of bacille Calmette-Guerin, new potential vaccines for tuberculosis have been tested around the world. One of the general concerns in tuberculosis vaccine development is the possibility of priming the host immune system with prior exposure to environmental mycobacteria antigens, which can change the efficacy of subsequent vaccination. As there is a great homology between the species from Mycobacterium genera, the previous contact of experimental animals with environmental mycobacteria could sensitize the mice and, in this way, could influence subsequent vaccine research. The aim of our study was to investigate critical points in an animal facility to search for environmental mycobacteria that eventually could be in direct or indirect contact with the experimental animals. Samples were collected from surfaces of walls, floor, animal cages and shelves and analysed using the Ogawa-Kudoh decontamination method. Samples of drinking water, food and sawdust were collected for analysis by the NALC/NaOH decontamination method. Also, the samples were cultivated directly in broth medium, without any method for decontamination. After decontamination methods, we observed bacterial colony growth in 4.31% of the total of samples analysed. These samples were stained with Ziehl-Neelsen and we did not detect any acid-fast bacilli, suggesting that the animal facility analysed is free from contamination by environmental mycobacteria and is not a source of mycobacterial antigens. Furthermore, our study showed a new paradigm in tuberculosis vaccine development: concern about the animal facility environment in terms of immune system priming of experimental animals by nascent bacterial contaminants.
Resumo:
The ability of the gonadal hormones to influence diverse immunological functions during the course of several infections has been extensively studied in the latest decades. Testosterone has a suppressive effect on immune response of vertebrates and increases susceptibility toward numerous parasitic diseases. Dehydroepiandrosterone is an abundant steroid hormone secreted by the human adrenal cortex and it is considered potent immune-activator. In this paper, it was examined the effects of DHEA and testosterone supplementation in the thymic atrophy in rats infected with Trypanosoma cruzi, by comparing blood parasitism, thymocyte proliferation, TNF-alpha and IL-12 levels. Our data point in the direction that DHEA treatment triggered enhanced thymocyte proliferation as compared to its infected counterparts and reduced production of TNF-alpha during the acute phase of infection. Oppositely, the lowest values for cells proliferation and IL-12 concentrations were reached in testosterone-supplied animals. The combined treatment testosterone and DHEA improves the effectiveness of the host`s immune response, reducing blood parasites and the immunosuppressive effects of male androgens besides increasing IL-12 concentrations and decreasing TNF-alpha levels. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to define the immunoregulatory role of prostaglandins in a mouse model of Strongyloides venezuelensis infection. Strongyloides venezuelensis induced an increase of eosinophils and mononuclear cells in the blood, peritoneal cavity fluid, and bronchoalveolar lavage fluid. Treatment with the dual cyclooxygenase (COX-1/-2) inhibitors indomethacin and ibuprofen, and the COX-2-selective inhibitor celecoxib partially blocked these cellular responses and was associated with enhanced numbers of infective larvae in the lung and adult worms in the duodenum. However, the drugs did not interfere with worm fertility. Cyclooxygenase inhibitors also inhibited the production of the T-helper type 2 (Th2) mediators IL-5, IgG1, and IgE, while indomethacin alone also inhibited IL-4, IL-10, and IgG2a. Cyclooxygenase inhibitors tended to enhance the Th1 mediators IL-12 and IFN-gamma. This shift away from Th2 immunity in cyclooxygenase inhibitor-treated mice correlated with reduced prostaglandin E(2) (PGE(2)) production in infected duodenal tissue. As PGE(2) is a well-characterized driver of Th2 immunity, we speculate that reduced production of this lipid might be involved in the shift toward a Th1 phenotype, favoring parasitism by S. venezuelensis. These findings provide new evidence that cyclooxygenase-derived lipids play a role in regulating host defenses against Strongyloides, and support the exploration of eicosanoid signaling for identifying novel preventive and therapeutic modalities against these infections.
Resumo:
Chagas` disease is considered the sixth most important neglected tropical disease worldwide. Considerable knowledge has been accumulated concerning the role of zinc on cellular immunity. The steroid hormone dehydroepiandrosterone (DHEA) is also known to modulate the immune system. The aims of this paper were to investigate a possible synchronization of their effects on cytokines and NO production and the resistance to Trypanosoma cruzi during the acute phase of infection. It was found that zinc, DHEA or zinc and DHEA supplementation enhanced the immune response, as evidenced by a significant reduction in parasitemia levels. Zinc and DHEA supplementation exerted additive effects on the immune response by elevation of macrophage counts, and by increasing concentrations of IFN-gamma and NO. (C) 2009 Elsevier GmbH. All rights reserved.
Resumo:
P>The aim of this study was to evaluate a possible synergism between melatonin and meloxicam in up-regulating the immune response in male Wistar rats infected with Trypanosoma cruzi during immunosuppression phenomenon, which characterizes the acute phase of the Chagas` disease. Male Wistar rats were infected with the Y strain of T. cruzi. Experiments were performed on 7, 14 and 21 days post-infection. Several immunological parameters were evaluated including gamma-interferon (IFN-gamma), interleukin-2 (IL-2), nitric oxide (NO) and prostaglandin E(2) (PGE(2)). The combined treatment with melatonin and meloxicam significantly enhanced the release of IL-2 and INF-gamma into animals` serum, when compared with the infected control groups during the course of infection. Furthermore, the blockade of PGE(2) synthesis and the increased release of NO by macrophage cells from T. cruzi-infected animals contributed to regulate the production of Th1 subset cytokines significantly reducing the parasitaemia in animals treated with the combination of both substances. Therefore, our results suggest that the association of melatonin and meloxicam was more effective in protecting animals against the harmful actions of T. cruzi infection as compared with the treatments of meloxicam or melatonin alone.