965 resultados para Used, Oil, Sludge, Engine, Volatile


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pyrolysis is one of several thermochemical technologies that convert solid biomass into more useful and valuable bio-fuels. Pyrolysis is thermal degradation in the complete or partial absence of oxygen. Under carefully controlled conditions, solid biomass can be converted to a liquid known as bie-oil in 75% yield on dry feed. Bio-oil can be used as a fuel but has the drawback of having a high level of oxygen due to the presence of a complex mixture of molecular fragments of cellulose, hemicellulose and lignin polymers. Also, bio-oil has a number of problems in use including high initial viscosity, instability resulting in increased viscosity or phase separation and high solids content. Much effort has been spent on upgrading bio-oil into a more usable liquid fuel, either by modifying the liquid or by major chemical and catalytic conversion to hydrocarbons. The overall primary objective was to improve oil stability by exploring different ways. The first was to detennine the effect of feed moisture content on bio-oil stability. The second method was to try to improve bio-oil stability by partially oxygenated pyrolysis. The third one was to improve stability by co-pyrolysis with methanol. The project was carried out on an existing laboratory pyrolysis reactor system, which works well with this project without redesign or modification too much. During the finishing stages of this project, it was found that the temperature of the condenser in the product collection system had a marked impact on pyrolysis liquid stability. This was discussed in this work and further recommendation given. The quantity of water coming from the feedstock and the pyrolysis reaction is important to liquid stability. In the present work the feedstock moisture content was varied and pyrolysis experiments were carried out over a range of temperatures. The quality of the bio-oil produced was measured as water content, initial viscosity and stability. The result showed that moderate (7.3-12.8 % moisture) feedstock moisture led to more stable bio-oil. One of drawbacks of bio-oil was its instability due to containing unstable oxygenated chemicals. Catalytic hydrotreatment of the oil and zeolite cracking of pyrolysis vapour were discllssed by many researchers, the processes were intended to eliminate oxygen in the bio-oil. In this work an alternative way oxygenated pyrolysis was introduced in order to reduce oil instability, which was intended to oxidise unstable oxygenated chemicals in the bio-oil. The results showed that liquid stability was improved by oxygen addition during the pyrolysis of beech wood at an optimum air factor of about 0.09-0.15. Methanol as a postproduction additive to bio-oil has been studied by many researchers and the most effective result came from adding methanol to oil just after production. Co-pyrolysis of spruce wood with methanol was undertaken in the present work and it was found that methanol improved liquid stability as a co-pyrolysis solvent but was no more effective than when used as a postproduction additive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives Effective skin antisepsis and disinfection of medical devices are key factors in preventing many healthcare-acquired infections associated with skin microorganisms, particularly Staphylococcus epidermidis. The aim of this study was to investigate the antimicrobial efficacy of chlorhexidine digluconate (CHG), a widely used antiseptic in clinical practice, alone and in combination with tea tree oil (TTO), eucalyptus oil (EO) and thymol against planktonic and biofilm cultures of S. epidermidis. Methods Antimicrobial susceptibility assays against S. epidermidis in a suspension and in a biofilm mode of growth were performed with broth microdilution and ATP bioluminescence methods, respectively. Synergy of antimicrobial agents was evaluated with the chequerboard method. Results CHG exhibited antimicrobial activity against S. epidermidis in both suspension and biofilm (MIC 2–8 mg/L). Of the essential oils thymol exhibited the greatest antimicrobial efficacy (0.5–4 g/L) against S. epidermidis in suspension and biofilm followed by TTO (2–16 g/L) and EO (4–64 g/L). MICs of CHG and EO were reduced against S. epidermidis biofilm when in combination (MIC of 8 reduced to 0.25–1 mg/L and MIC of 32–64 reduced to 4 g/L for CHG and EO, respectively). Furthermore, the combination of EO with CHG demonstrated synergistic activity against S. epidermidis biofilm with a fractional inhibitory concentration index of <0.5. Conclusions The results from this study suggest that there may be a role for essential oils, in particular EO, for improved skin antisepsis when combined with CHG.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The organic matter in five oil shales (three from the Kimmeridge Clay sequence, one from the Oxford Clay sequence and one from the Julia Creek deposits in Australia) has been isolated by acid demineralisation, separated into kerogens and bitumens by solvent extraction and then characterised in some detail by chromatographic, spectroscopic and degradative techniques. Kerogens cannot be characterised as easily as bitumens because of their insolubility, and hence before any detailed molecular information can be obtained from them they must be degraded into lower molecular weight, more soluble components. Unfortunately, the determination of kerogen structures has all too often involved degradations that were far too harsh and which lead to destruction of much of the structural information. For this reason a number of milder more selective degradative procedures have been tested and used to probe the structure of kerogens. These are: 1. Lithium aluminium hydride reduction. - This procedure is commonly used to remove pyrite from kerogens and it may also increase their solubility by reduction of labile functional groups. Although reduction of the kerogens was confirmed, increases in solubility were correlated with pyrite content and not kerogen reduction. 2. O-methylation in the presence of a phase transfer catalyst. - By the removal of hydrogen bond interactions via O-methylation, it was possible to determine the contribution of such secondary interactions to the insolubility of the kerogens. Problems were encountered with the use of the phase transfer catalyst. 3. Stepwise alkaline potassium permanganate oxidation. - Significant kerogen dissolution was achieved using this procedure but uncontrolled oxidation of initial oxidation products proved to be a problem. A comparison with the peroxytrifluoroaceticacid oxidation of these kerogens was made. 4. Peroxytrifluoroacetic acid oxidation. - This was used because it preferentially degrades aromatic rings whilst leaving any benzylic positions intact. Considerable conversion of the kerogens into soluble products was achieved with this procedure. At all stages of degradation the products were fully characterised where possible using a variety of techniques including elemental analysis, solution state 1H and 13C nuclear magnetic resonance, solid state 13C nuclear magnetic resonance, gel-permeationchromatography, gas chromatography-mass spectroscopy, fourier transform infra-red spectroscopy and some ultra violet-visible spectroscopy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The literature relating to haze formation, methods of separation, coalescence mechanisms, and models by which droplets <100 μm are collected, coalesced and transferred, have been reviewed with particular reference to particulate bed coalescers. The separation of secondary oil-water dispersions was studied experimentally using packed beds of monosized glass ballotini particles. The variables investigated were superficial velocity, bed depth, particle size, and the phase ratio and drop size distribution of inlet secondary dispersion. A modified pump loop was used to generate secondary dispersions of toluene or Clairsol 350 in water with phase ratios between 0.5-6.0 v/v%.Inlet drop size distributions were determined using a Malvern Particle Size Analyser;effluent, coalesced droplets were sized by photography. Single phase flow pressure drop data were correlated by means of a Carman-Kozeny type equation. Correlations were obtained relating single and two phase pressure drops, as (ΔP2/μc)/ΔP1/μd) = kp Ua Lb dcc dpd Cine A flow equation was derived to correlate the two phase pressure drop data as, ΔP2/(ρcU2) = 8.64*107 [dc/D]-0.27 [L/D]0.71 [dp/D]-0.17 [NRe]1.5 [e1]-0.14 [Cin]0.26  In a comparison between functions to characterise the inlet drop size distributions a modification of the Weibull function provided the best fit of experimental data. The general mean drop diameter was correlated by: q_p q_p p_q /β      Γ ((q-3/β) +1) d qp = d fr  .α        Γ ((P-3/β +1 The measured and predicted mean inlet drop diameters agreed within ±15%. Secondary dispersion separation depends largely upon drop capture within a bed. A theoretical analysis of drop capture mechanisms in this work indicated that indirect interception and London-van der Waal's mechanisms predominate. Mathematical models of dispersed phase concentration m the bed were developed by considering drop motion to be analogous to molecular diffusion.The number of possible channels in a bed was predicted from a model in which the pores comprised randomly-interconnected passage-ways between adjacent packing elements and axial flow occured in cylinders on an equilateral triangular pitch. An expression was derived for length of service channels in a queuing system leading to the prediction of filter coefficients. The insight provided into the mechanisms of drop collection and travel, and the correlations of operating parameters, should assist design of industrial particulate bed coalescers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The internationally accepted Wolfson Heat Treatment Centre Engineering Group test was used to evaluate the cooling characteristics of the most popular commercial polymer quenchants: polyalkylene glycols, polyvinylpyrrolidones and polyacrylates. Prototype solutions containing poly(ethyloxazoline) were also examined. Each class of polymer was capable of providing a wide range of cooling rates depending on the product formulation, concentration, temperature, agitation, ageing and contamination. Cooling rates for synthetic quenchants were generally intermediate between those of water and oil. Control techniques, drag-out losses and response to quenching in terms of hardness and residual stress for a plain carbon steel, were also considered. A laboratory scale method for providing a controllable level of forced convection was developed. Test reproducibility was improved by positioning the preheated Wolfson probe 25mm above the geometric centre of a 25mm diameter orifice through which the quenchant was pumped at a velocity of 0.5m/s. On examination, all polymer quenchants were found to operate by the same fundamental mechanism associated with their viscosity and ability to form an insulating polymer-rich-film. The nature of this film, which formed at the vapour/liquid interface during boiling, was dependent on the polymer's solubility characteristics. High molecular weight polymers and high concentration solutions produced thicker, more stable insulating films. Agitation produced thinner more uniform films. Higher molecular weight polymers were more susceptible to degradation, and increased cooling rates, with usage. Polyvinylpyrrolidones can be cross-linked resulting in erratic performance, whilst the anionic character of polyacrylates can lead to control problems. Volatile contaminants tend to decrease the rate of cooling and salts to increase it. Drag-out increases upon raising the molecular weight of the polymer and its solution viscosity. Kinematic viscosity measurements are more effective than refractometer readings for concentration control, although a quench test is the most satisfactory process control method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coke oven liquor is a toxic wastewater produced in large quantities by the Iron and Steel, and Coking Industries, and gives rise to major effluent treatment problems in those industries. Conscious of the potentially serious environmental impact of the discharge of such wastes, pollution control agencies in many countries have made progressively more stringent quality requirements for the discharge of the treated waste. The most common means of treating the waste is the activated sludge process. Problems with achieving consistently satisfactory treatment by this process have been experienced in the past. The need to improve the quality of the discharge of the treated waste prompted attempts by TOMLINS to model the process using Adenosine Triphosophnte (ATP) as a measure of biomass, but these were unsuccessful. This thesis describes work that was carried out to determine the significance of ATP in the activated sludge treatment of the waste. The use of ATP measurements in wastewater treatment were reviewed. Investigations were conducted into the ATP behaviour of the batch activated sludge treatment of two major components of the waste, phenol, and thiocyanate, and the continuous activated sludge treatment of the liquor itself, using laboratory scale apparatus. On the basis of these results equations were formulated to describe the significance of ATP as a measured activity and biomass in the treatment system. These were used as the basis for proposals to use ATP as a control parameter in the activated sludge treatment of coke oven liquor, and wastewaters in general. These had relevance both to the treatment of the waste in the reactor and to the settlement of the sludge produced in the secondary settlement stage of the treatment process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis deals with the background, development and description of a mathematical stock control methodology for use within an oil and chemical blending company, where demand and replenishment lead-times are generally non-stationary. The stock control model proper relies on, as input, adaptive forecasts of demand determined for an economical forecast/replenishment period precalculated on an individual stock-item basis. The control procedure is principally that of the continuous review, reorder level type, where the reorder level and reorder quantity 'float', that is, each changes in accordance with changes in demand. Two versions of the Methodology are presented; a cost minimisation version and a service level version. Realising the importance of demand forecasts, four recognised variations of the Trigg and Leach adaptive forecasting routine are examined. A fifth variation, developed, is proposed as part of the stock control methodology. The results of testing the cost minimisation version of the Methodology with historical data, by means of a computerised simulation, are presented together with a description of the simulation used. The performance of the Methodology is in addition compared favourably to a rule-of-thumb approach considered by the Company as an interim solution for reducing stack levels. The contribution of the work to the field of scientific stock control is felt to be significant for the following reasons:- (I) The Methodology is designed specifically for use with non-stationary demand and for this reason alone appears to be unique. (2) The Methodology is unique in its approach and the cost-minimisation version is shown to work successfully with the demand data presented. (3) The Methodology and the thesis as a whole fill an important gap between complex mathematical stock control theory and practical application. A brief description of a computerised order processing/stock monitoring system, designed and implemented as a pre-requisite for the Methodology's practical operation, is presented as an appendix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrocarbons are the most common form of energy used to date. The activities involving exploration and exploitation of large oil and gas fields are constantly in operation and have extended to such hostile environments as the North Sea. This enforces much greater demands on the materials which are used, and the need for enhancing the endurance of the existing ones which must continue parallel to the explorations. Due to their ease in fabrication, relatively high mechanical properties and low costs, steels are the most widely favoured material for the construction of offshore platforms. The most critical part of an offshore structure prone to failure are the welded nodal joints, particulary those which are used within the vicinity of the splash zones. This is an area of high complex stress concentrations, varying mechanical and metallurgical properties in addition to severe North Sea environmental conditions. The main are of this work has been concerned with the durability studies of this type of steel, based on the concept of the worst case analysis, consisting of combinations of welds of varying qualities, various degrees of stress concentrations and the environmental conditions of stress corrosion and hydrogen embrittlement. The experiments have been designed to reveal significance of defects as sites of crack initiation in the welded steels and the extent to which stress corrosion and hydrogen embrittlement will limit their durability. This has been done for various heat treatments and in some experiments deformation has been forced through the welded zone of the specimens to reveal the mechanical properties of the welds themselves to provide data for finite element simulations. A comparison of the results of these simulations with the actual deformation and fracture behaviour has been done to reveal the extent to which both mechanical and metallurgical factors control behaviour of the steels in the hostile environments of high stress, corrosion, and hydrogen embrittlement at their surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The primary objective of this work is to relate the biomass fuel quality to fast pyrolysis-oil quality in order to identify key biomass traits which affect pyrolysis-oil stability. During storage the pyrolysis-oil becomes more viscous due to chemical and physical changes, as reactions and volatile losses occur due to aging. The reason for oil instability begins within the pyrolysis reactor during pyrolysis in which the biomass is rapidly heated in the absence of oxygen, producing free radical volatiles which are then quickly condensed to form the oil. The products formed do not reach thermodynamic equilibrium and in tum the products react with each other to try to achieve product stability. The first aim of this research was to develop and validate a rapid screening method for determining biomass lignin content in comparison to traditional, time consuming and hence costly wet chemical methods such as Klason. Lolium and Festuca grasses were selected to validate the screening method, as these grass genotypes exhibit a low range of Klason /Acid Digestible Fibre lignin contents. The screening methodology was based on the relationship between the lignin derived products from pyrolysis and the lignin content as determined by wet chemistry. The second aim of the research was to determine whether metals have an affect on fast pyrolysis products, and if any clear relationships can be deduced to aid research in feedstock selection for fast pyrolysis processing. It was found that alkali metals, particularly Na and K influence the rate and yield of degradation as well the char content. Pre-washing biomass with water can remove 70% of the total metals, and improve the pyrolysis product characteristics by increasing the organic yield, the temperature in which maximum liquid yield occurs and the proportion of higher molecular weight compounds within the pyrolysis-oil. The third aim identified these feedstock traits and relates them to the pyrolysis-oil quality and stability. It was found that the mineral matter was a key determinant on pyrolysis-oil yield compared to the proportion of lignin. However the higher molecular weight compounds present in the pyrolysis-oil are due to the lignin, and can cause instability within the pyrolysis-oil. The final aim was to investigate if energy crops can be enhanced by agronomical practices to produce a biomass quality which is attractive to the biomass conversion community, as well as giving a good yield to the farmers. It was found that the nitrogen/potassium chloride fertiliser treatments enhances Miscanthus qualities, by producing low ash, high volatiles yields with acceptable yields for farmers. The progress of senescence was measured in terms of biomass characteristics and fast pyrolysis product characteristics. The results obtained from this research are in strong agreement with published literature, and provides new information on quality traits for biomass which affects pyrolysis and pyrolysis-oils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the cost of electricity generation using bio-oil produced by the fast pyrolysis of UK energy crops. The study covers cost from the farm to the generator’s terminals. The use of short rotation coppice willow and miscanthus as feedstocks was investigated. All costs and performance data have been taken from published papers, reports or web sites. Generation technologies are compared at scales where they have proved economic burning other fuels, rather than at a given size. A pyrolysis yield model was developed for a bubbling fluidised bed fast pyrolysis reactor from published data to predict bio-oil yields and pyrolysis plant energy demands. Generation using diesel engines, gas turbines in open and combined cycle (CCGT) operation and steam cycle plants was considered. The use of bio-oil storage to allow the pyrolysis and generation plants to operate independently of each other was investigated. The option of using diesel generators and open cycle gas turbines for combined heat and power was examined. The possible cost reductions that could be expected through learning if the technology is widely implemented were considered. It was found that none of the systems analysed would be viable without subsidy, but with the current Renewable Obligation Scheme CCGT plants in the 200 to 350 MWe range, super-critical coal fired boilers co-fired with bio-oil, and groups of diesel engine based CHP schemes supplied by a central pyrolysis plant would be viable. It was found that the cost would reduce with implementation and the planting of more energy crops but some subsidy would still be needed to make the plants viable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel electrostatic precipitator CAROLA® is developed for collection of fine oil mists. It operates on the principle of unipolar particle charging in the corona discharge and particle precipitation under the field of space charge. The pilot precipitator was tested at different gas temperatures. It is shown that the increase of gas temperature changes the characteristics of the corona discharge and particle size distribution, especially for droplets sub-micron droplets. The CAROLA® precipitator was used for collection of oil mist from pyrolysis gases at the HALOCLEAN® plant. The flow rate of biomass in the HALOCLEAN® plant was 15-30 kg/h. The particle mass concentration in the raw gas was over 100 g/Nm. The operation voltage of the precipitator was 10-12 kV and corona current up to 0,1 mA. Single stage electrostatic precipitator ensured mass collection efficiency 97-99,5% for pyrolysis oil mist.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Presents a prototype modelling methodology that provides a generic approach to the creation of quantitative models of the relationships between a working environment, the direct workers and their subsequent performance. Once created for an organisation, such models can provide a prediction of how the behaviour of their workers will alter in response to changes in their working environment. The goal of this work is to improve the decision processes used in the design of the working environment. Through improving such processes, companies will gain better performance from their direct workers, and so improve business competitiveness. This paper first presents the need to model the behaviour of direct workers in manufacturing environments. To begin to address this need, a simplistic modelling framework is developed, and then this is expanded to provide a detailed modelling methodology. There then follows a description of an industrial evaluation of this methodology at Ford Motor Company. This modelling methodology has been assessed in this case study and has been found to be valid in this case. There are many challenges that this theme of research needs to address. The work described in this paper has made an important first step in this area, having gone some way to establishing a generic methodology and illustrating its potential value. Our future work will build on this foundation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalytic pyrolysis experiments have been carried out on Brunei rice husk (BRH) to obtain bio-oil using a fixed-bed pyrolysis rig. ZSM-5, Al-MCM-41, Al-MSU-F and Brunei rice husk ash (BRHA) were used as the catalysts for the catalytic pyrolysis experiments and comparison was done to analyse the changes in the bio-oil properties and yield. Properties of the liquid catalytic and non-catalytic bio-oil were analysed in terms of water content, pH, acid number, viscosity, density and calorific value. The bio-oil chemical composition shows that ZSM-5 increases the production of aromatic hydrocarbons and light phenols, whilst Al-MCM-41 reduces the acetic acid production. The catalytic runs increased the calorific value and water content in the bio-oil, whilst viscosity, density and acid number is decreased. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renewable non-edible plant oils such as jatropha and karanj have potential to substitute fossil diesel fuels in CI engines. A multi-cylinder water cooled IDI type CI engine has been tested with jatropha and karanj oils and comparisons made against fossil diesel. The physical and chemical properties of the three fuels were measured to investigate the suitability of jatropha and karanj oils as fuels for CI engines. The engine cooling water circuit and fuel supply systems were modified such that hot jacket water preheated the neat plant oil prior to injection. Between jatropha and karanj there was little difference in the performance, emission and combustion results. Compared to fossil diesel, the brake specific fuel consumption on volume basis was around 3% higher for the plant oils and the brake thermal efficiency was almost similar. Jatropha and karanj operation resulted in higher CO 2 and NO x emissions by 7% and 8% respectively, as compared to diesel. The cylinder gas pressure diagram showed stable engine operation with both plant oils. At full load, the plant oils gave around 3% higher peak cylinder pressure than fossil diesel. With the plant oils, cumulative heat release was smaller at low load and almost similar at full load, compared to diesel. At full load, the plant oils exhibited 5% shorter combustion duration. The study concludes that the IDI type CI engine can be efficiently operated with neat jatropha (or karanj) oil preheated by jacket water, after small modifications of the engine cooling and fuel supply circuits. © 2012 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although well known for delivering various pharmaceutical agents, liposomes can be prepared to entrap gas rather than aqueous media and have the potential to be used as pressure probes in magnetic resonance imaging (MRI). Using these gas-filled liposomes (GFL) as tracers, MRI imaging of pressure regions of a fluid flowing through a porous medium could be established. This knowledge can be exploited to enhance recovery of oil from the porous rock regions within oil fields. In the preliminary studies, we have optimized the lipid composition of GFL prepared using a simple homogenization technique and investigated key physico-chemical characteristics (size and the physical stability) and their efficacy as pressure probes. In contrast to the liposomes possessing an aqueous core which are prepared at temperatures above their phase transition temperature (Tc), homogenization of the phospholipids such as 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocoline (DSPC) in aqueous medium below their Tc was found to be crucial in formation of stable GFL. DSPC based preparations yielded a GFL volume of more than five times compared to their DPPC counter part. Although the initial vesicle sizes of both DSPC and DPPC based GFL were about 10 μm, after 7 days storage at 25°C, the vesicle sizes of both formulations significantly (p < 0.05) increased to 28.3 ± 0.3 μm and 12.3 ± 1.0 μm, respectively. When the DPPC preparation was supplemented with cholesterol at a 1:0.5 or 1:1 molar ratio, significantly (p < 0.05) larger vesicles were formed (12-13 μm), however, compared to DPPC only vesicles, both cholesterol supplemented formulations displayed enhanced stability on storage indicating a stabilizing effect of cholesterol on these gas-filled vesicles. In order to induce surface charge on the GFL, DPPC and cholesterol (1: 0.5 molar ratio) liposomes were supplemented with a cationic surfactant, stearylamine, at a molar ratio of 0.25 or 0.125. Interestingly, the ζ potential values remained around neutrality at both stearylamine ratios suggesting the cationic surfactant was not incorporated within the bilayers of the GFL. Microscopic analysis of GFL confirmed the presence of spherical structures with a size distribution between 1-8 μm. This study has identified that DSPC based GFL in aqueous medium dispersed in 2% w/v methyl cellulose although yielded higher vesicle sizes over time were most stable under high pressures exerted in MRI. Copyright © Informa Healthcare USA, Inc.