996 resultados para URANIUM HEXAFLUORIDE
Resumo:
Sediments from Sites 582 (11 samples), 583 (19 samples), 584 (31 samples), 294 (1 sample), 296 (9 samples), 297 (3 samples), 436 (11 samples), and 439 (3 samples) were analyzed by X-ray fluorescence and/or instrumental neutron activation analysis. Ten major elements and 24 minor and trace elements (including 7 rare earth elements) were determined with these methods. Geochemistry varies systematically with both the site location and sediment age. Such variations are explained in terms of changes in sedimentation processes caused by plate motion and changes in ocean currents.
Resumo:
Geological, petrochemical, and geochemical data are reported for volcanic rocks of a Cretaceous pull-apart basin in the Tan Lu strike-slip system, Asian continental margin. A comparison of these volcanic rocks with magmatic rocks from typical Cenozoic transform margins in the western North America and rift zones of Korea made it possible to distinguish some indicator features of transform-margin volcanic rocks. Magmatic rocks from strike-slip extension zones bear island-arc, intraplate, and occasionally depleted MORB geochemical signatures. In addition to calc-alkaline rocks there are bimodal volcanic series. The rocks are characterized by high K2O, MgO, and TiO2 contents. They show variable enrichment in LILE relative to HFSE, which is typical of island-arc magmas. At the same time they are rich in compatible transition elements, which is a characteristic of intraplate magmas. Trace element distribution patterns normalized to MORB or primitive mantle usually show a negative Ta-Nb anomaly typical of suprasubduction settings. Their Ta/Nb ratio is lower, whereas Ba/Nb, Ba/La, and La/Yb ratios are higher than those of some MORB and OIB. In terms of trace element systematics, for example, Ta-Th-Hf, Ba/La-(Ba/La)_n, (La/Sm)_n-La/Hf, and others, they fall within the area of mixing of magmas from several sources (island arc, intraplate, and depleted reservoirs). Magmatic rocks of transform settings show a sigmoidal chondrite-normalized REE distribution pattern with a negative slope of LREE, depletion in MREE, and an enriched or flat HREE pattern. Magmas with mixed geochemical characteristics presumably originated in a transform margin setting in local extension zones under influence of mantle diapirs, which caused metasomatism and melting of the lithosphere at different levels, and mixing of melts from different sources in variable proportions.
Resumo:
New data are reported on structure of sections, chemical composition, and age of volcano-sedimentary and volcanic rocks from the Sinii Utes Depression in the Southern Primorye region. The Sinii Utes Depression is filled with two sequences: the lower sequence composed of sedimentary-volcanogenic coaliferous rocks (the stratotype of the Sinii Utes Formation) and the upper sequence consisting of tephroid with overlying basalts. This work considers chemical composition and problems of K-Ar dating of basalts. The uppermost basaltic flow has K-Ar age 22.0±1.0 Ma. The dates obtained for the middle and upper parts of lava flows are underestimated. It is explained by their heating due to combustion of brown coals of the Sinii Utes Formation underlying the lava flow. Calculations show that argon could only partly have been removed from the basalts owing to conductive heat transfer and was lost largely due to infiltration of hot gases in heterogeneous fissured medium. Basaltic volcanism on continental margins of the southern Primorye region and the adjacent Korean and Chinese areas at the Oligocene-Miocene boundary preceded Early-Middle Miocene spreading and formation of the Sea of Japan basin. Undifferentiated moderately alkaline basalts of intraplate affinity developed in the Amba Depression and some other structures of the southern Primorye region and intraplate alkali basalts of the Phohang Graben in the Korean Peninsula serve as indicators of incipient spreading regime in the Sea of Japan. Potassic basalt-trachybasalt eruptions occurred locally in riftogenic depressions and shield volcanoes. In some structures this volcanism was terminated by eruptions of intermediate and acid lavas. Such evolution of volcanism is explained by selective contamination of basaltic melts during their interaction with crustal acid material and generation of acid anatectic melts.
Resumo:
Oceanic sediments deposited at high rate close to continents are dominated by terrigenous material. Aside from dilution by biogenic components, their chemical compositions reflect those of nearby continental masses. This study focuses on oceanic sediments coming from the juvenile Canadian Cordillera and highlights systematic differences between detritus deriving from juvenile crust and detritus from old and mature crust. We report major and trace element concentrations for 68 sediments from the northernmost part of the Cascade forearc, drilled at ODP Sites 888 and 1027. The calculated weighted averages for each site can then be used in the future to quantify the contribution of subducted sediments to Cascades volcanism. The two sites have similar compositions but Site 888, located closer to the continent, has higher sandy turbidite contents and displays higher bulk SiO2/Al2O3 with lower bulk Nb/Zr, attributed to the presence of zircons in the coarse sands. Comparison with published data for other oceanic sedimentary piles demonstrates the existence of systematic differences between modern sediments deriving from juvenile terranes (juvenile sediments) and modern sediments derived from mature continental areas (cratonic sediments). The most striking systematic difference is for Th/Nb, Th/U, Nb/U and Th/Rb ratios: juvenile sediments have much lower ratios than cratonic sediments. The small enrichment of Th over Nb in cratonic sediments may be explained by intracrustal magmatic and metamorphic differentiation processes. In contrast, their elevated Th/U and Nb/U ratios (average values of 6.87 and 7.95, respectively) in comparison to juvenile sediments (Th/U ~ 3.09, Nb/U ~ 5.15) suggest extensive U and Rb losses on old cratons. Uranium and Rb losses are attributed to long-term leaching by rain and river water during exposure of the continental crust at the surface. Over geological times, the weathering effects create a slow but systematic increase of Th/U with exposure time.
Resumo:
Lateral diffusivity is computed from a tracer release experiment in the northeastern tropical Atlantic thermocline. The uncertainties of the estimates are inferred from a synthetic particle release using a high-resolution ocean circulation model. The main method employed to compute zonal and meridional components of lateral diffusivity is the growth of the second moment of a cloud of tracer. The application of an areal comparison method for estimating tracer-based diffusivity in the field experiments is also discussed. The best estimate of meridional eddy diffusivity in the Guinea Upwelling region at about 300 m depth is estimated to be inline image m2 s-1. The zonal component of lateral diffusivity is estimated to be inline image m2 s-1, while areal comparison method yields areal equivalent zonal diffusivity component of inline image m2 s?1. In comparison to Ky, Kx is about twice larger, resulting from the tracer patch stretching by zonal jets. Employed conceptual jet model indicates that zonal jet velocities of about inline image m s?1 are required to explain the enhancement of the zonal eddy diffusivity component. Finally, different sampling strategies are tested on synthetic tracer release experiments. They indicate that the best sampling strategy is a sparse regular sampling grid covering most of the tracer patch.
Resumo:
During ODP Leg 119 one basement hole was drilled at Site 738, on the Southern Kerguelen Plateau. The 38.2 m of basement rocks drilled comprises three basaltic aa-lava flows with basal and top breccias, overlain by Turanian marine carbonates. Site 738 basalts probably erupted near a fracture zone, and were emplaced during the plateau-forming stage of Kerguelen Plateau evolution under quiet, subaerial to shallow water conditions. The basalts are T-MORB, chemically resembling Mesozoic continental flood basalts of the southern hemisphere. Two slightly different magma batches are distinguished by Fe, Ti, Al, Zr, and REE concentrations. Prior to eruption, the magmas had undergone significant olivine and some clinopyroxene fractionation. Incompatible and immobile trace element concentrations and ratios point to a veined upper mantle source, where a refractory mineral assemblage retains Nb, Ta, and the HREE. The basaltic melts derived from this regionally veined, enriched upper mantle have high LREE, and especially Ba and Th concentrations and bear the DUPAL isotopic signature gained from deep- seated, recycled, old oceanic(?) crust. A saponite-celadonite secondary mineral assemblage confines the alteration temperature to <170°C. Alteration is accompanied by net gains of H2O, CO2, K2O, and Rb, higher oxidation, minor Na2O, SiO2 gains, and losses of V and CaO. Released Ca, together with Ca from seawater, precipitated as calcite in veins and vesicles, plumbed the circulation system and terminated the rock/open seawater interaction.
Resumo:
Subduction related mafic/ultramafic complexes marking the suture between the Wilson Terrane and the Bowers Terrane in northern Victoria Land (Antarctica) are well-suited for evaluating the magmatic and structural evolu- tion at the Palaeo-Pacific continental margin of Gondwana. One of these intru- sions is the "Tiger Gabbro Complex" (TGC), which is located at the southern end of the island-arc type Bowers Terrane. The TGC is an early Palaeozoic island-arc related layered igneous complex characterized by extraordinarly fresh sequences of ultramafic, mafic and evolved lithologies and extensive development of high-temperature high-strain zones. The goal of the present study is to establish the kinematic, petrogenetic and temporal development of the TGC in order to evaluate the magmatic and structural evolution of the deep crustal roots of this Cambrian-aged island-arc. Fieldwork during GANOVEX X was carried out to provide insight into: (i) the spatial relations between the different igneous lithologies of the TGC, (ii) the nature of the contact between the TGC and Bowers Terrane, and (iii) the high-temperature shear zones exposed in parts of the TGC. Here, we report the results of detailed field and petrological observations combined with new geochronological data. Based on these new data, we tentatively propose a petrogenetic-kinematic model for the TGC, which involves a two-phase evolution during the Ross orogeny. These phases can be summarized as: (i) an early phase (maximum age c. 530 Ma) involving tectono-magmatic processes that were active at the deep crustal level represented by the TGC within the Bowers island arc and within a general NE-SW directed contractional regime and (ii) a late phase (maximum age c. 490 Ma) attributed to the late Ross orogenic intrusion of the TGC into the higher-crustal metasedimentary country rocks of the Bowers Terrane under NE-SW directed horizontal maximum stress and subsequent cooling.
Resumo:
An investigation of uranium and thorium contents in extrusive rocks from underwater rises in the Sea of Japan demonstrates that concentrations of these radioactive elements can be used as indicators of geodynamic conditions. It is concluded that basalt volcanism of the Sea of Japan is of continental type.
Resumo:
In the monograph metalliferous sediments of the East Pacific Rise near 21°S are under consideration. Distribution trends of chemical, mineral and grain size compositions of metalliferous sediments accumulated near the axis of this ultrafast spreading segment of the EPR are shown. On the basis of lithological and geochemical investigations spatial and temporal variations of hydrothermal activity are estimated. Migration rates of hydrothermal fields along the spreading axis are calculated. The model of cyclic hydrothermal process is suggested as a result of tectono-magmatic development of the spreding centre.
Resumo:
Upper Miocene to Pleistocene hemipelagites and resedimented facies recovered at Holes 976B and 977A (Leg 161) in the Alboran Basin consist mainly of biogenic and detrital components, with a minor contribution of neoformed mineral phases. Diagenetic processes have not obliterated the primary deposition signal, and therefore detrital components (quartz, feldspar, detrital dolomite, rock fragments, and clays) provide information about source rocks and provenances. No major bulk or clay mineralogy differences were recognized between resedimented and hemipelagic facies; in fact, similar mineral assemblages in both types of facies suggest common source rocks. However, mineral abundance fluctuations can be related to climate variations and tectonic factors, as the main controls of sediment fill of this basin. A marked increase in smectites in Messinian sediments suggests an extensive development of soils during that time, probably favored by the alternation of wet and dry climate episodes and the relative aridification of the Mediterranean borderlands. A notable increase in detrital components suggests a sea-level fall and/or tectonic uplift during the late Pliocene. The significant increase in detrital dolomite in the uppermost Pliocene deposits suggests the uplift of dolomite-rich rocks as source areas. Mineral components in Pleistocene sediments indicate increasing tectonic stability, and clay-mineral fluctuations during the Pleistocene can be related not only to tectonic events, but also to alternating cooling and warming periods.