934 resultados para UPSTREAM


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Along a downstream stretch of River Mure , Romania, adult males of two feral fish species, European chub (Leuciscus cephalus) and sneep (Chondrostoma nasus) were sampled at four sites with different levels of contamination. Fish were analysed for the biochemical markers hsp70 (in liver and gills) and hepatic EROD activity, as well as several biometrical parameters (age, length, wet weight, condition factor). None of the biochemical markers correlated with any biometrical parameter, thus biomarker reactions were related to site-specific criteria. While the hepatic hsp70 level did not differ among the sites, significant elevation of the hsp70 level in the gills revealed proteotoxic damage in chub at the most upstream site, where we recorded the highest heavy metal contamination of the investigated stretch, and in both chub and sneep at the site right downstream of the city of Arad. In both species, significantly elevated hepatic EROD activity downstream of Arad indicated that fish from these sites are also exposed to organic chemicals. The results were indicative of impaired fish health at least at three of the four investigated sites. The approach to relate biomarker responses to analytical data on pollution was shown to fit well the recent EU demands on further enhanced efforts in the monitoring of Romanian water quality.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The control of cell growth, that is cell size, is largely controlled by mTOR (the mammalian target of rapamycin), a large serine/threonine protein kinase that regulates ribosome biogenesis and protein translation. mTOR activity is regulated both by the availability of growth factors, such as insulin/IGF-1 (insulin-like growth factor 1), and by nutrients, notably the supply of certain key amino acids. The last few years have seen a remarkable increase in our understanding of the canonical, growth factor-regulated pathway for mTOR activation, which is mediated by the class I PI3Ks (phosphoinositide 3-kinases), PKB (protein kinase B), TSC1/2 (the tuberous sclerosis complex) and the small GTPase, Rheb. However, the nutrient-responsive input into mTOR is important in its own right and is also required for maximal activation of mTOR signalling by growth factors. Despite this, the details of the nutrient-responsive signalling pathway(s) controlling mTOR have remained elusive, although recent studies have suggested a role for the class III PI3K hVps34. In this issue of the Biochemical Journal, Findlay et al. demonstrate that the protein kinase MAP4K3 [mitogen-activated protein kinase kinase kinase kinase-3, a Ste20 family protein kinase also known as GLK (germinal centre-like kinase)] is a new component of the nutrient-responsive pathway. MAP4K3 activity is stimulated by administration of amino acids, but not growth factors, and this is insensitive to rapamycin, most likely placing MAP4K3 upstream of mTOR. Indeed, MAP4K3 is required for phosphorylation of known mTOR targets such as S6K1 (S6 kinase 1), and overexpression of MAP4K3 promotes the rapamycin-sensitive phosphorylation of these same targets. Finally, knockdown of MAP4K3 levels causes a decrease in cell size. The results suggest that MAP4K3 is a new component in the nutrient-responsive pathway for mTOR activation and reveal a completely new function for MAP4K3 in promoting cell growth. Given that mTOR activity is frequently deregulated in cancer, there is much interest in new strategies for inhibition of this pathway. In this context, MAP4K3 looks like an attractive drug target since inhibitors of this enzyme should switch off mTOR, thereby inhibiting cell growth and proliferation, and promoting apoptosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contractile tissues demonstrate a pronounced capacity to remodel their composition in response to mechanical challenges. Descriptive evidence suggests the upstream involvement of the phosphotransfer enzyme FAK (focal adhesion kinase) in the molecular control of load-dependent muscle plasticity. Thereby FAK evolves as a myocellular transducer of mechanical signals towards downstream transcript expression in myofibres. Recent advances in somatic gene therapy now allow the exploration of the functional involvement of this enzyme in mechanotransduction in intact muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epidemiology, phylogeny, and biology of nonencapsulated Streptococcus pneumoniae are largely unknown. Increased colonization capacity and transformability are, however, intriguing features of these pneumococci and play an important role. Twenty-seven nonencapsulated pneumococci were identified in a nationwide collection of 1,980 nasopharyngeal samples and 215 blood samples obtained between 1998 and 2002. On the basis of multilocus sequence typing and capsule region analysis we divided the nonencapsulated pneumococci into two groups. Group I was closely related to encapsulated strains. Group II had a clonal population structure, including two geographically widespread clones able to cause epidemic conjunctivitis and invasive diseases. Group II strains also carried a 1,959-bp homologue of aliB (aliB-like ORF 2) in the capsule region, which was highly homologous to a sequence in the capsule region of Streptococcus mitis. In addition, strains of the two major clones in group II had an additional sequence, aliB-like ORF 1 (1,968 to 2,004 bp), upstream of aliB-like ORF 2. Expression of aliB-like ORF 1 was detected by reverse transcription-PCR, and the corresponding RNA was visualized by Northern blotting. A gene fragment homologous to capN of serotypes 33 and 37 suggests that group II strains were derived from encapsulated pneumococci some time ago. Therefore, loss of capsule expression in vivo was found to be associated with the importation of one or two aliB homologues in some nonencapsulated pneumococci.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aminolevulinic acid synthase 1 (ALAS1) is the rate-limiting enzyme of heme synthesis in the liver and is highly regulated to adapt to the metabolic demand of the hepatocyte. In the present study, we describe human hepatic ALAS1 as a new direct target of the bile acid-activated nuclear receptor farnesoid X receptor (FXR). Experiments in primary human hepatocytes and in human liver slices showed that ALAS1 messenger RNA (mRNA) and activity is increased upon exposure to chenodeoxycholic acid (CDCA), the most potent natural FXR ligand, or the synthetic FXR-specific agonist GW4064. Moreover, overexpression of a constitutively active form of FXR further increased ALAS1 mRNA expression. In agreement with these observations, an FXR response element was identified in the 5' flanking region of human ALAS1 and characterized in reporter gene assays. A highly conserved FXR binding site (IR1) within a 175-bp fragment at -13 kilobases upstream of the transcriptional start site was able to trigger an FXR-specific increase in luciferase activity upon CDCA treatment. Site-directed mutagenesis of IR1 abolished this effect. Binding of FXR/retinoid acid X receptor heterodimers was demonstrated by mobility gel shift experiments. Conclusion: These data strongly support a role of bile acid-activated FXR in the regulation of human ALAS1 and, consequently, hepatic porphyrin and heme synthesis. These data also suggest that elevated endogenous bile acids may precipitate neuropsychiatric attacks in patients with acute hepatic porphyrias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A common time scale for the EPICA ice cores from Dome C (EDC) and Dronning Maud Land (EDML) has been established. Since the EDML core was not drilled on a dome, the development of the EDML1 time scale for the EPICA ice core drilled in Dronning Maud Land was based on the creation of a detailed stratigraphic link between EDML and EDC, which was dated by a simpler 1D ice-flow model. The synchronisation between the two EPICA ice cores was done through the identification of several common volcanic signatures. This paper describes the rigorous method, using the signature of volcanic sulfate, which was employed for the last 52 kyr of the record. We estimated the discrepancies between the modelled EDC and EDML glaciological age scales during the studied period, by evaluating the ratio R of the apparent duration of temporal intervals between pairs of isochrones. On average R ranges between 0.8 and 1.2 corresponding to an uncertainty of up to 20% in the estimate of the time duration in at least one of the two ice cores. Significant deviations of R up to 1.4–1.5 are observed between 18 and 28 kyr before present (BP), where present is defined as 1950. At this stage our approach does not allow us unequivocally to find out which of the models is affected by errors, but assuming that the thinning function at both sites and accumulation history at Dome C (which was drilled on a dome) are correct, this anomaly can be ascribed to a complex spatial accumulation variability (which may be different in the past compared to the present day) upstream of the EDML core.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vascular endothelial (VE)-cadherin is an essential protein of adherens junctions of endothelial cells and plays a pivotal role in vascular homeostasis. Mammalian target of rapamycin complex 2 (mTORC2) deficient mice display defects in fetal vascular development. Blocking mTOR or the upstream kinase phosphoinositide 3-kinase (PI3K) led to a dose-dependently decrease of the VE-cadherin mRNA and protein expression. Immunofluorescent staining showed a strongly decreased expression of VE-cadherin at the interface of human umbilical endothelial cells (HUVECs) followed by intercellular gap formation. Herewith, we demonstrated that the expression of VE-cadherin is dependent on mTOR and PI3K signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deregulated activation of the Src tyrosine kinase and heightened Id1 expression are independent mediators of aggressive tumor biology. The present report implicates Src signaling as a critical regulator of Id1 gene expression. Microarray analyses showed that Id family genes were among the most highly down-regulated by incubation of A549 lung carcinoma cells with the small-molecule Src inhibitor AZD0530. Id1 transcript and protein levels were potently reduced in a dose-dependent manner concomitantly with the reduction of activated Src levels. These effects were conserved across a panel of lung, breast, prostate, and colon cancer cell lines and confirmed by the ability of PP2, Src siRNA, and Src-blocking peptides to suppress Id1 expression. PP2, AZD0530, and dominant-negative Src abrogated Id1 promoter activity, which was induced by constitutively active Src. The Src-responsive region of the Id1 promoter was mapped to a region 1,199 to 1,360 bps upstream of the translation start site and contained a Smad-binding element. Src was also required for bone morphogenetic protein-2 (BMP-2)-induced Id1 expression and promoter activity, was moderately activated by BMP-2, and complexed with Smad1/5. Conversely, Src inhibitors blocked Smad1/5 nuclear translocation and binding to the Src-responsive region of the Id1 promoter. Consistent with a role for Src and Id1 in cancer cell invasion, Src inhibitors and Id1 siRNA decreased cancer cell invasion, which was increased by Id1 overexpression. Taken together, these results reveal that Src positively interacts with the BMP-Smad-Id pathway and provide new ways for targeted inhibition of Id1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A diesel oxidation catalyst (DOC) with a catalyzed diesel particulate filter (CPF) is an effective exhaust aftertreatment device that reduces particulate emissions from diesel engines, and properly designed DOC-CPF systems provide passive regeneration of the filter by the oxidation of PM via thermal and NO2/temperature-assisted means under various vehicle duty cycles. However, controlling the backpressure on engines caused by the addition of the CPF to the exhaust system requires a good understanding of the filtration and oxidation processes taking place inside the filter as the deposition and oxidation of solid particulate matter (PM) change as functions of loading time. In order to understand the solid PM loading characteristics in the CPF, an experimental and modeling study was conducted using emissions data measured from the exhaust of a John Deere 6.8 liter, turbocharged and after-cooled engine with a low-pressure loop EGR system and a DOC-CPF system (or a CCRT® - Catalyzed Continuously Regenerating Trap®, as named by Johnson Matthey) in the exhaust system. A series of experiments were conducted to evaluate the performance of the DOC-only, CPF-only and DOC-CPF configurations at two engine speeds (2200 and 1650 rpm) and various loads on the engine ranging from 5 to 100% of maximum torque at both speeds. Pressure drop across the DOC and CPF, mass deposited in the CPF at the end of loading, upstream and downstream gaseous and particulate emissions, and particle size distributions were measured at different times during the experiments to characterize the pressure drop and filtration efficiency of the DOCCPF system as functions of loading time. Pressure drop characteristics measured experimentally across the DOC-CPF system showed a distinct deep-bed filtration region characterized by a non-linear pressure drop rise, followed by a transition region, and then by a cake-filtration region with steadily increasing pressure drop with loading time at engine load cases with CPF inlet temperatures less than 325 °C. At the engine load cases with CPF inlet temperatures greater than 360 °C, the deep-bed filtration region had a steep rise in pressure drop followed by a decrease in pressure drop (due to wall PM oxidation) in the cake filtration region. Filtration efficiencies observed during PM cake filtration were greater than 90% in all engine load cases. Two computer models, i.e., the MTU 1-D DOC model and the MTU 1-D 2-layer CPF model were developed and/or improved from existing models as part of this research and calibrated using the data obtained from these experiments. The 1-D DOC model employs a three-way catalytic reaction scheme for CO, HC and NO oxidation, and is used to predict CO, HC, NO and NO2 concentrations downstream of the DOC. Calibration results from the 1-D DOC model to experimental data at 2200 and 1650 rpm are presented. The 1-D 2-layer CPF model uses a ‘2-filters in series approach’ for filtration, PM deposition and oxidation in the PM cake and substrate wall via thermal (O2) and NO2/temperature-assisted mechanisms, and production of NO2 as the exhaust gas mixture passes through the CPF catalyst washcoat. Calibration results from the 1-D 2-layer CPF model to experimental data at 2200 rpm are presented. Comparisons of filtration and oxidation behavior of the CPF at sample load-cases in both configurations are also presented. The input parameters and selected results are also compared with a similar research work with an earlier version of the CCRT®, to compare and explain differences in the fundamental behavior of the CCRT® used in these two research studies. An analysis of the results from the calibrated CPF model suggests that pressure drop across the CPF depends mainly on PM loading and oxidation in the substrate wall, and also that the substrate wall initiates PM filtration and helps in forming a PM cake layer on the wall. After formation of the PM cake layer of about 1-2 µm on the wall, the PM cake becomes the primary filter and performs 98-99% of PM filtration. In all load cases, most of PM mass deposited was in the PM cake layer, and PM oxidation in the PM cake layer accounted for 95-99% of total PM mass oxidized during loading. Overall PM oxidation efficiency of the DOC-CPF device increased with increasing CPF inlet temperatures and NO2 flow rates, and was higher in the CCRT® configuration compared to the CPF-only configuration due to higher CPF inlet NO2 concentrations. Filtration efficiencies greater than 90% were observed within 90-100 minutes of loading time (starting with a clean filter) in all load cases, due to the fact that the PM cake on the substrate wall forms a very efficient filter. A good strategy for maintaining high filtration efficiency and low pressure drop of the device while performing active regeneration would be to clean the PM cake filter partially (i.e., by retaining a cake layer of 1-2 µm thickness on the substrate wall) and to completely oxidize the PM deposited in the substrate wall. The data presented support this strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In developing countries many water distribution systems are branched networks with little redundancy. If any component in the distribution system fails, many users are left relying on secondary water sources. These sources oftentimes do not provide potable water and prolonged use leads to increased cases of water borne illnesses. Increasing redundancy in branched networks increases the reliability of the networks, but is oftentimes viewed as unaffordable. This paper presents a procedure for water system managers to use to determine which loops when added to a branch network provide the most benefit for users. Two methods are presented, one ranking the loops based on total number of users benefited, and one ranking the loops of number of vulnerable users benefited. A case study is presented using the water distribution system of Medina Bank Village, Belize. It was found that forming loops in upstream pipes connected to the main line had the potential to benefit the most users.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As water quality interventions are scaled up to meet the Millennium Development Goal of halving the proportion of the population without access to safe drinking water by 2015 there has been much discussion on the merits of household- and source-level interventions. This study furthers the discussion by examining specific interventions through the use of embodied human and material energy. Embodied energy quantifies the total energy required to produce and use an intervention, including all upstream energy transactions. This model uses material quantities and prices to calculate embodied energy using national economic input/output-based models from China, the United States and Mali. Embodied energy is a measure of aggregate environmental impacts of the interventions. Human energy quantifies the caloric expenditure associated with the installation and operation of an intervention is calculated using the physical activity ratios (PARs) and basal metabolic rates (BMRs). Human energy is a measure of aggregate social impacts of an intervention. A total of four household treatment interventions – biosand filtration, chlorination, ceramic filtration and boiling – and four water source-level interventions – an improved well, a rope pump, a hand pump and a solar pump – are evaluated in the context of Mali, West Africa. Source-level interventions slightly out-perform household-level interventions in terms of having less total embodied energy. Human energy, typically assumed to be a negligible portion of total embodied energy, is shown to be significant to all eight interventions, and contributing over half of total embodied energy in four of the interventions. Traditional gender roles in Mali dictate the types of work performed by men and women. When the human energy is disaggregated by gender, it is seen that women perform over 99% of the work associated with seven of the eight interventions. This has profound implications for gender equality in the context of water quality interventions, and may justify investment in interventions that reduce human energy burdens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The South Florida Water Management District (SFWMD) manages and operates numerous water control structures that are subject to scour. In an effort to reduce scour downstream of these gated structures, laboratory experiments were performed to investigate the effect of active air-injection downstream of the terminal structure of a gated spillway on the depth of the scour hole. A literature review involving similar research revealed significant variables such as the ratio of headwater-to-tailwater depths, the diffuser angle, sediment uniformity, and the ratio of air-to-water volumetric discharge values. The experimental design was based on the analysis of several of these non-dimensional parameters. Bed scouring at stilling basins downstream of gated spillways has been identified as posing a serious risk to the spillway’s structural stability. Although this type of scour has been studied in the past, it continues to represent a real threat to water control structures and requires additional attention. A hydraulic scour channel comprised of a head tank, flow straightening section, gated spillway, stilling basin, scour section, sediment trap, and tail-tank was used to further this analysis. Experiments were performed in a laboratory channel consisting of a 1:30 scale model of the SFWMD S65E spillway structure. To ascertain the feasibility of air injection for scour reduction a proof-of-concept study was performed. Experiments were conducted without air entrainment and with high, medium, and low air entrainment rates for high and low headwater conditions. For the cases with no air entrainment it was found that there was excessive scour downstream of the structure due to a downward roller formed upon exiting the downstream sill of the stilling basin. When air was introduced vertically just downstream of, and at the same level as, the stilling basin sill, it was found that air entrainment does reduce scour depth by up to 58% depending on the air flow rate, but shifts the deepest scour location to the sides of the channel bed instead of the center. Various hydraulic flow conditions were tested without air injection to verify which scenario caused more scour. That scenario, uncontrolled free, in which water does not contact the gate and the water elevation in the stilling basin is lower than the spillway crest, would be used for the remainder of experiments testing air injection. Various air flow rates, diffuser elevations, air hole diameters, air hole spacings, diffuser angles and widths were tested in over 120 experiments. Optimal parameters include air injection at a rate that results in a water-to-air ratio of 0.28, air holes 1.016mm in diameter the entire width of the stilling basin, and a vertically orientated injection pattern. Detailed flow measurements were collected for one case using air injection and one without. An identical flow scenario was used for each experiment, namely that of a high flow rate and upstream headwater depth and a low tailwater depth. Equilibrium bed scour and velocity measurements were taken using an Acoustic Doppler Velocimeter at nearly 3000 points. Velocity data was used to construct a vector plot in order to identify which flow components contribute to the scour hole. Additionally, turbulence parameters were calculated in an effort to help understand why air-injection reduced bed scour. Turbulence intensities, normalized mean flow, normalized kinetic energy, and anisotropy of turbulence plots were constructed. A clear trend emerged that showed air-injection reduces turbulence near the bed and therefore reduces scour potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Phytic acid is the major storage form of phosphorus and inositol in seeds and legumes. It forms insoluble phytate salts by chelating with positively charged mineral ions. Non-ruminant animals are not able to digest phytate due to the lack of phytases in their GI tracks, thus the undigested phytate is excreted leading to environmental contamination. Supplementation with phytases in animal feed has proven to be an effective strategy to alleviate nutritional and environmental issues. The unique catalytic and thermal stability properties of alkaline phytase from lily pollen (LlALP) suggest that it has the potential to be useful as a feed supplement. Our goal is to develop a method for the production of substantial amounts of rLlALP for animal feed and structural studies. rLlALP2 has been successfully expressed in the yeast, Pichia pastoris. However, expression yield was modest (8-10 mg/L). Gene copy number has been identified as an important parameter in enhancing protein yields. Multicopy clones were selected using Zeocin-resistance-based vectors and challenging transformants to high Zeocin levels under different conditions. Data indicate that increasing selection pressure led to the generation of clones with amplification of both rLlAlp2 and Zeor genes and the two genes were not equally amplified. Additionally, clones generated by step-wise methods led to clones with greater amplification. The effects of transgene copy number and gene sequence optimization on expression levels of rLlALP2 were examined. The data indicate that increasing the copy number of rLlAlp2 in transformed clones was detrimental to expression level. The use of a sequence-optimized rLlAlp2 (op-rLlAlp2) increased expression yield of the active enzyme by 25-50%, suggesting that transcription and translation efficiency are not major bottlenecks in the production of rLlALP2. Lowering induction temperature to 20 oC led to an increase in enzyme activity of 1.2 to 20-fold, suggesting that protein folding or post-translational processes may be limiting factors for rLlALP2 production. Cumulatively, optimization of copy number, gene sequence optimization and reduced temperature led to increase of rLlALP2 enzyme activity by three-fold (25-30 mg/L). In an effort to simplify the purification process of rLlALP2, extracellular expression of phytase was investigated. Extracellular expression is dependent on the presence of an appropriate secretion signal upstream of the transgene native signal peptide(s) present in the transgene may also influence secretion efficiency. The data suggest that deletion of both N- and C-terminal signal peptides of rLlALP2 enhanced α-mating factor (α-MF)-driven secretion of LlALP2 by four-fold. The secretion signal peptide of chicken egg white lysozyme was ineffective in secretion rLlALP2 in P. pastoris. To enhance rLlALP2 secretion, effectiveness of the strong inducible promoter (PAOX1) was compared with the constitutive promoter (PGAP). The intracellular yield of rLlALP2 was about four-fold greater under the control of PGAP compared to PAOX1 and extracellular expression level of rLlALP2 was around eight-fold (75-100 mg/L) greater. The successful production of active rLlALP2 in P. pastoris will allow us to conduct the animal feed supplementation studies and structural studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PDZ-binding motifs are found in the C-terminal tails of numerous integral membrane proteins where they mediate specific protein-protein interactions by binding to PDZ-containing proteins. Conventional yeast two-hybrid screens have been used to probe protein-protein interactions of these soluble C termini. However, to date no in vivo technology has been available to study interactions between the full-length integral membrane proteins and their cognate PDZ-interacting partners. We previously developed a split-ubiquitin membrane yeast two-hybrid (MYTH) system to test interactions between such integral membrane proteins by using a transcriptional output based on cleavage of a transcription factor from the C terminus of membrane-inserted baits. Here we modified MYTH to permit detection of C-terminal PDZ domain interactions by redirecting the transcription factor moiety from the C to the N terminus of a given integral membrane protein thus liberating their native C termini. We successfully applied this "MYTH 2.0" system to five different mammalian full-length renal transporters and identified novel PDZ domain-containing partners of the phosphate (NaPi-IIa) and sulfate (NaS1) transporters that would have otherwise not been detectable. Furthermore this assay was applied to locate the PDZ-binding domain on the NaS1 protein. We showed that the PDZ-binding domain for PDZK1 on NaS1 is upstream of its C terminus, whereas the two interacting proteins, NHERF-1 and NHERF-2, bind at a location closer to the N terminus of NaS1. Moreover NHERF-1 and NHERF-2 increased functional sulfate uptake in Xenopus oocytes when co-expressed with NaS1. Finally we used MYTH 2.0 to demonstrate that the NaPi-IIa transporter homodimerizes via protein-protein interactions within the lipid bilayer. In summary, our study establishes the MYTH 2.0 system as a novel tool for interactive proteomics studies of membrane protein complexes.