958 resultados para Tumors in animals.


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Clostridium perfringens β-toxin (CPB) is a β-barrel pore-forming toxin and an essential virulence factor of C. perfringens type C strains, which cause fatal hemorrhagic enteritis in animals and humans. We have previously shown that CPB is bound to endothelial cells within the intestine of affected pigs and humans, and that CPB is highly toxic to primary porcine endothelial cells (pEC) in vitro. The objective of the present study was to investigate the type of cell death induced by CPB in these cells, and to study potential host cell mechanisms involved in this process. CPB rapidly induced lactate dehydrogenase (LDH) release, propidium iodide uptake, ATP depletion, potassium efflux, a marked rise in intracellular calcium [Ca(2+)]i, release of high-mobility group protein B1 (HMGB1), and caused ultrastructural changes characteristic of necrotic cell death. Despite a certain level of caspase-3 activation, no appreciable DNA fragmentation was detected. CPB-induced LDH release and propidium iodide uptake were inhibited by necrostatin-1 and the two dissimilar calpain inhibitors PD150606 and calpeptin. Likewise, inhibition of potassium efflux, chelation of intracellular calcium and treatment of pEC with cyclosporin A also significantly inhibited CPB-induced LDH release. Our results demonstrate that rCPB primarily induces necrotic cell death in pEC, and that necrotic cell death is not merely a passive event caused by toxin-induced membrane disruption, but is propagated by host cell-dependent biochemical pathways activated by the rise in intracellular calcium and inhibitable by necrostatin-1, consistent with the emerging concept of programmed necrosis ("necroptosis").

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Detection of antibodies against Bovine viral diarrhea virus (BVDV) in serum and milk by enzyme-linked immunosorbent assay (ELISA) is a crucial part of all ongoing national schemes to eradicate this important cattle pathogen. Serum and milk are regarded as equally suited for antibody measurement. However, when retesting a seropositive cow 1 day after calving, the serum was negative in 6 out of 9 different ELISAs. To further investigate this diagnostic gap around parturition, pre- and postcalving serum and milk samples of 5 cows were analyzed by BVDV antibody ELISA and serum neutralization test (SNT). By ELISA, 3 out of the 5 animals showed a diagnostic gap in the serum for up to 12 days around calving but all animals remained positive in SNT. In milk, the ELISA was strongly positive after birth but antibody levels decreased considerably within the next few days. Because of the immunoglobulin G (IgG)1-specific transport of serum antibodies into the mammary gland for colostrum production, the IgG subclass specificity of the total and the BVDV-specific antibodies were determined. Although all 5 animals showed a clear decrease in the total and BVDV-specific IgG1 antibody levels at parturition, the precalving IgG1-to-IgG2 ratios of the BVDV-specific antibodies were considerably lower in animals that showed the diagnostic gap. Results showed that BVDV seropositive cows may become "false" negative in several ELISAs in the periparturient period and suggest that the occurrence of this diagnostic gap is influenced by the BVDV-specific IgG subclass response of the individual animal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cattle persistently infected with a noncytopathic Bovine viral diarrhea virus (BVDV) are at risk of developing fatal "mucosal disease" (MD). The authors investigated the role of various apoptosis pathways in the pathogenesis of lesions in animals suffering from MD. Therefore, they compared the expression of caspase-3, caspase-8, caspase-9, and Bcl-2L1 (Bcl-x) in tissues of 6 BVDV-free control animals, 7 persistently infected (PI) animals that showed no signs of MD (non-MD PI animals), and 11 animals with MD and correlated the staining with the localization of mucosal lesions. Caspase-3 and -9 staining were markedly stronger in MD cases and were associated with mucosal lesions, even though non-MD PI animals and negative controls also expressed caspase-9. Conversely, caspase-8 was not elevated in any of the animals analyzed. Interestingly, Bcl-x also colocalized with mucosal lesions in the MD cases. However, Bcl-x was similarly expressed in tissues from all 3 groups, and thus, its role in apoptosis needs to be clarified. This study clearly illustrates ex vivo that the activation of the intrinsic, but not the extrinsic, apoptosis pathway is a key element in the pathogenesis of MD lesions observed in cattle persistently infected with BVDV. However, whether direct induction of apoptosis in infected cells or indirect effects induced by the virus are responsible for the lesions observed remains to be established.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Signaling through epidermal growth factor receptor (EGFR/ErbB) family members plays a very important role in regulating proliferation, development, and malignant transformation of mammary epithelial cells. ErbB family members are often over-expressed in human breast carcinomas. Lapatinib is an ErbB1 and ErbB2 tyrosine kinase inhibitor that has been shown to have anti-proliferative effects in breast and lung cancer cells. Cells treated with Lapatinib undergo G1 phase arrest, followed by apoptosis. Lapatinib has been approved for clinical use, though patients have developed resistance to the drug, as seen previously with other EGFR inhibitors. Moreover, the therapeutic efficacy varies significantly within the patient population, and the mechanism of drug sensitivity is not fully understood. Expression levels of ErbB2 are used as a prognostic marker for Lapatinib response; however, even among breast tumor cell lines that express similar levels of ErbB2 there is marked difference in their proliferative responses to Lapatinib. To understand the mechanisms of acquired resistance, we established a cell line SkBr3-R that is resistant to Lapatinib, from a Lapatinib-sensitive breast tumor cell line, SkBr3. We have characterized the cell lines and demonstrated that Lapatinib resistance in our system is not facilitated by receptor-level activity or by previously known mutations in the ErbB receptors. Significant changes were observed in cell proliferation, cell migration, cell cycle and cell death between the Lapatinib resistant SkBr3-R and sensitive SkBr3 cell lines. Recent studies have suggested STAT3 is upregulated in Lapatinib resistant tumors in association with ErbB signaling. We investigated the role that STAT3 may play in Lapatinib resistance and discovered higher STAT3 activity in these resistant cells. In addition, transcriptional profiling indicated higher expression of STAT3 target genes, as well as of other genes that promote survival. The gene array data also revealed cell cycle regulators and cell adhesion/junction component genes as possible mediator of Lapatinib resistance. Altogether, this study has identified several possible mechanisms of Lapatinib resistance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian genomes encode at least 15 distinct DNA polymerases, functioning as specialists in DNA replication, DNA repair, recombination, or bypass of DNA damage. Although the DNA polymerase zeta (polzeta) catalytic subunit REV3L is important in defense against genotoxins, little is known of its biological function. This is because REV3L is essential during embryogenesis, unlike other translesion DNA polymerases. Outstanding questions include whether any adult cells are viable in the absence of polzeta and whether polzeta status influences tumorigenesis. REV3L-deficient cells have properties that could influence the development of neoplasia in opposing ways: markedly reduced damage-induced point mutagenesis and extensive chromosome instability. To answer these questions, Rev3L was conditionally deleted from tissues of adult mice using MMTV-Cre. Loss of REV3L was tolerated in epithelial tissues but not in the hematopoietic lineage. Thymic lymphomas in Tp53(-/-) Rev3L conditional mice occurred with decreased latency and higher incidence. The lymphomas were populated predominantly by Rev3L-null T cells, showing that loss of Rev3L can promote tumorigenesis. Remarkably, the tumors were frequently oligoclonal, consistent with accelerated genetic changes in the absence of Rev3L. Mammary tumors could also arise from Rev3L-deleted cells in both Tp53(+/+) and Tp53(+/-) backgrounds. Mammary tumors in Tp53(+/-) mice deleting Rev3L formed months earlier than mammary tumors in Tp53(+/-) control mice. Prominent preneoplastic changes in glandular tissue adjacent to these tumors occurred only in mice deleting Rev3L and were associated with increased tumor multiplicity. Polzeta is the only specialized DNA polymerase yet identified that inhibits spontaneous tumor development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND A number of epidemiological studies indicate an inverse association between atopy and brain tumors in adults, particularly gliomas. We investigated the association between atopic disorders and intracranial brain tumors in children and adolescents, using international collaborative CEFALO data. PATIENTS AND METHODS CEFALO is a population-based case-control study conducted in Denmark, Norway, Sweden, and Switzerland, including all children and adolescents in the age range 7-19 years diagnosed with a primary brain tumor between 2004 and 2008. Two controls per case were randomly selected from population registers matched on age, sex, and geographic region. Information about atopic conditions and potential confounders was collected through personal interviews. RESULTS In total, 352 cases (83%) and 646 controls (71%) participated in the study. For all brain tumors combined, there was no association between ever having had an atopic disorder and brain tumor risk [odds ratio 1.03; 95% confidence interval (CI) 0.70-1.34]. The OR was 0.76 (95% CI 0.53-1.11) for a current atopic condition (in the year before diagnosis) and 1.22 (95% CI 0.86-1.74) for an atopic condition in the past. Similar results were observed for glioma. CONCLUSIONS There was no association between atopic conditions and risk of all brain tumors combined or of glioma in particular. Stratification on current or past atopic conditions suggested the possibility of reverse causality, but may also the result of random variation because of small numbers in subgroups. In addition, an ongoing tumor treatment may affect the manifestation of atopic conditions, which could possibly affect recall when reporting about a history of atopic diseases. Only a few studies on atopic conditions and pediatric brain tumors are currently available, and the evidence is conflicting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The "lipotoxic footprint" of cardiac maladaptation in diet-induced obesity is poorly defined. We investigated how manipulation of dietary lipid and carbohydrate influenced potential lipotoxic species in the failing heart. In Wistar rats, contractile dysfunction develops at 48 weeks on a high-fat/high-carbohydrate "Western" diet, but not on low-fat/high-carbohydrate or high-fat diets. Cardiac content of the lipotoxic candidates--diacylglycerol, ceramide, lipid peroxide, and long-chain acyl-CoA species--was measured at different time points by high-performance liquid chromatography and biochemical assays, as was lipogenic capacity in the heart and liver by qRT-PCR and radiometric assays. Changes in membranes fluidity were also monitored using fluorescence polarization. We report that Western feeding induced a 40% decrease in myocardial palmitoleoyl-CoA content and a similar decrease in the unsaturated-to-saturated fatty acid ratio. These changes were associated with impaired cardiac mitochondrial membrane fluidity. At the same time, hepatic lipogenic capacity was increased in animals fed Western diet (+270% fatty acid elongase activity compared with high-fat diet), while fatty acid desaturase activity decreased over time. Our findings suggest that dysregulation of lipogenesis is a significant component of heart failure in diet-induced obesity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Partial migration, whereby only a fraction of the population migrates, is thought to be the most common type of migration in the animal kingdom, and can have important ecological and evolutionary consequences. Despite this, the factors that influence which individuals migrate and which remain resident are poorly understood. Recent work has shown that consistent individual differences in personality traits in animals can be ecologically important, but field studies integrating personality traits with migratory behaviour are extremely rare. In this study, we investigate the influence of individual boldness, an important personality trait, upon the migratory propensity of roach, a freshwater fish, over two consecutive migration seasons. We assay and individually tag 460 roach and show that boldness influences migratory propensity, with bold individuals being more likely to migrate than shy fish. Our data suggest that an extremely widespread personality trait in animals can have significant ecological consequences via influencing individual-level migratory behaviour.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

EphB4 receptors, a member of the largest family of receptor tyrosine kinases, are found over-expressed in a variety of tumors cells including glioma cells as well as angiogenic blood vessels. Noninvasive imaging of EphB4 could potentially increase early detection rates, monitor response to therapy directed against EphB4, and improve patient outcomes. Targeted delivery of EphB4 receptor specific peptide conjugated hollow gold nanoshells (HAuNS) into tumors has great potential in cancer imaging and photothermal therapy. In this study, we developed an EphB4 specific peptide named TNYL-RAW and labeled with radioisotope 64Cu and Cy5.5 dye. We also conjugate this specific peptide with hollow gold nanoshells (HAuNS) to evaluate targeted photothermal therapy of cancers. In vitro, 64Cu-DOTA-TNYL- RAW specifically bind to CT26 and PC-3M cells but not to A549 cells. In vivo, Small-animal PET/CT clearly showed the significant uptake of 64Cu-DOTA-TNYL-RAW in CT26 and PC-3M tumors but not in A549 tumors. Furthermore, µPET/CT and near-infrared optical imaging clearly showed the uptake of the dual labeled TNYL-RAW peptide in both U251 and U87 tumors in the brains of nude mice. In U251 tumors, Cy5.5-labeled peptide can bind to EphB4-expressing tumor blood vessels and tumors cells. But in U87 models, dual labeled peptide only could bind to tumor associated blood vessels. Also, Irradiation of PC-3M and CT-26 cell treated with TNYL-PEG-HAuNS nanopatilces with near-infrared (NIR) laser resulted in selective destruction of these cells in vitro. EphB4 targeted TNYL-PEG-HAuNS showed more photothermal killing effect on CT26 tumor model than PEG-HAuNS did. In summary, tumors with overexpression of EphB4 receptors can be noninvasively visualized by micro PET/CT with 64Cu labeled or dual labeled TNYL-RAW peptide. Targeted delivery of TNYL-RAW conjugated HAuNS into tumors can greatly improve the treatment effect of photothermal therapy. The information acquired with this study should be advantageous in improving diagnostics and future applications in photothermal ablation therapy in clinical.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pancreatic cancer is the fourth leading cause of cancer-related mortality in the United States and the fifth leading cause of cancer-related mortality worldwide. Pancreatic cancer is a big challenge in large due to the lack of early symptoms. In addition, drug resistance is a major obstacle to the success of chemotherapy in pancreatic cancer. The underlying mechanism of drug resistance in human pancreatic cancers is not well understood. Better understanding of the mechanism of molecular pathways in human pancreatic cancers can help to identify the novel therapeutic target candidates, and develop the new preventive and clinic strategies to improve patient survival. We discovered that TAK1 is overexpressed in pancreatic cancer cell lines and patient tumor tissues. We demonstrated that the elevated activity of TAK1 is caused by its binding partner TAB1. Knocking down of TAK1 in pancreatic cancer cells with RNAi technique resulted in cell apoptosis and significantly reduces the size of tumors in mice and made a chemotherapy drug more potent. Targeting the kinase activity of TAK1 with the selective inhibitor LY2610956 strongly synergized in vitro with the antitumor activity of gemcitabine, oxaliplatin, or irinotecan on pancreatic cancer cells. These findings highlighted that TAK1 could be a potential therapeutic target for pancreatic cancer. We also demonstrated that TAK activity is regulated by its binding protein TAB1. We defined a minimum TAB1 sequence which is required and sufficient for TAK1 kinase activity. We created a recombinant TAK1-TAB1 C68 fusion form which has highly kinase activity. This active form could is used for screening TAK1 inhibitors. In addition, several posttranslational modifications were identified in our study. The acetylation of lysine 158 on TAK1 is required for kinase activity. This site is conserved throughout all of kinase. Our findings may reveal a new mechanism by which kinase activity is regulated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Understanding Nanog’s Role in Cancer Biology Mark Daniel Badeaux Supervisory Professor Dean Tang, PhD The cancer stem cell model holds that tumor heterogeneity and population-level immortality are driven by a subset of cells within the tumor, termed cancer stem cells. Like embryonic or somatic stem cells, cancer stem cells are believed to possess self-renewal capacity and the ability to give rise to a multitude of varieties of daughter cell. Because of cancer’s implied connections to authentic stem cells, we screened a variety of prostate cancer cell lines and primary tumors in order to determine if any notable ‘stemness’ genes were expressed in malignant growths. We found a promising lead in Nanog, a central figure in maintaining embryonic stem cell pluripotency, and through a variety of experiments in which we diminished Nanog expression, found that it may play a significant role in prostate cancer development. We then created a transgenic mouse model in which we targeted Nanog expression to keratin 14-expressing in order to assess its potential contribution to tumorigenesis. We found a variety of developmental abnormalities and altered differentiation patterns in our model , but much to our chagrin we observed neither spontaneous tumor formation nor premalignant changes in these mice, but instead surprisingly found that high levels of Nanog expression inhibited tumor formation in a two-stage skin carcinogenesis model. We also noted a depletion of skin stem cell populations, which underlies the wound-healing defect our mice harbor as well. Gene expression analysis shows a reduction in c-Jun and Bmp5, two genes whose loss inhibits skin tumor development and reduces stem cell counts respectively. As we further explored Nanog’s activity in prostate cancer, it became apparent that the protein oftentimes was not expressed. Emboldened by the competing endogenous RNA (ceRNA) hypothesis, we identified the Nanog 3’UTR as a regulator of the tumor suppressive microRNA 128a (miR-128a), which includes known oncogenes such as Bmi1 among its authentic targets. Future work will necessarily involve discerning instances in which Nanog mRNA is the biologically relevant molecule, as well as identifying additional mRNA species which may serve solely as a molecular sink for miR-128a.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most skin cancers induced in mice by Ultraviolet (UV) radiation express highly immunogenic Tumor specific transplantation antigens (TSTAs) and thus exhibit a regressor phenotype. In this study, I have used cloned genes encoding tumor antigens and oncogenes in conjunction with DNA transfection technique to isolate and characterize regressor variants from progressor tumors and vice versa. The purpose of this study was (1) to determine whether the product of a cloned gene (216) from UV-1591 tumor, which encodes a novel MHC class I antigen can function as a tumor rejection antigen when expressed on unrelated, nonantigenic, murine tumor cells or whether its function is restricted to UV-induced tumors, and (2) to determine the processes by which progressor variants derived from a regressor UV-2240 cell line by transfection with an activated Ha-ras oncogene escape the immune defenses of the normal immunocompetent host.^ To answer the first question, a spontaneously transformed, nonimmunogenic cell line (10T-1) was cotransfected with DNA from p216 and pSV2-neo plasmids. Results demonstrate that the product of a cloned TSTA gene from a UV-induced murine tumor is capable of functioning as a tumor rejection antigen when expressed on unrelated, nonantigenic tumor cells. In addition, these results indicate that this approach could be used to augment the immune response against poorly antigenic tumors.^ To answer the second question, progressor variants were isolated from a highly antigenic UV radiation-induced C3H mouse regressor fibrosarcoma cell line, UV-2240, by transfection with an activated Ha-ras oncogene. Subcutaneous injection of Ha-ras-transfected UV-2240 cells into immunocompetent C3H mice produced tumors in 4 of 36 animals. In addition, the Ha-ras-induced progressor variants produced experimental lung metastasis in both normal C3H and nude mice, although they induced more lung nodules in nude mice than in normal C3H mice. Results indicate that the progressor phenotype of the Ha-ras-induced tumor variants is not due to loss of TSTAs or MHC class I antigens. This implies that some tumors can escape the immune defenses of the normal immunocompetent host by mechanisms other than the loss of TSTAs and MHC class I antigens. (Abstract shortened with permission of author.) ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pedigree analysis of certain families with a high incidence of tumors suggests a genetic predisposition to cancer. Li and Fraumeni described a familial cancer syndrome that is characterized by multiple primary tumors, early age of onset, and marked variation in tumor type. Williams and Strong (1) demonstrated that at least 7% of childhood soft tissue sarcoma patients had family histories that is readily explained by a highly penetrant autosomal dominant gene. To characterize the mechanism for genetic predisposition to many tumor types in these families, we have studied genetic alterations in fibroblasts, a target tissue from patients with the Li-Fraumeni Syndrome (LFS).^ We have observed spontaneous changes in initially normal dermal fibroblasts from LFS patients as they are cultured in vitro. The cells acquire an altered morphology, chromosomal anomalies, and anchorage-independent growth. This aberrant behavior of fibroblasts from LFS patients had never been observed in fibroblasts from normal donors. In addition to these phenotypic alterations, patient fibroblasts spontaneously immortalize by 50 population doublings (pd) in culture; unlike controls that remain normal and senesce by 30-35 (2). At 50 pd, immortal fibroblasts from two patients were found to be susceptible to tumorigenic transformation by an activated T24 H-ras oncogene (3). Approximately 80% of the oncogene expressing transfectants were capable of forming tumors in nude mice within 2-3 weeks. p53 has been previously associated with immortalization of cells in culture and cooperation with ras in transfection assays. Therefore, patients' fibroblast and lymphocyte derived DNA was tested for point mutations in p53. It was shown that LFS patients inherited certain point mutations in one of the two p53 alleles (4). Further studies on the above LFS immortal fibroblasts have demonstrated loss of the remaining p53 allele concomitant with escape from senescence. While the loss of the second allele correlates with immortalization it is not sufficient to transformation by an activated H-ras or N-ras oncogene. These immortal fibroblasts are resistant to tumorigenic transformation by v-abl, v-src, c-neu or v-mos oncogene; implying that additional steps are required in the tumorigenic progression of LFS patients' fibroblasts.^ References. (1) Williams et al., J. Natl. Cancer Inst. 79:1213, 1987. (2) Bischoff et al., Cancer Res. 50:7979, 1990. (3) Bischoff et al., Oncogene 6:183, 1991. (4) Malkin et al., Science 250:1233, 1990. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF) is known to have antiproliferative effects on a wide variety of tumor cells but proliferative effects on normal cells. However, the molecular basis for such differences in the action of TNF are unknown. The overall objectives of my research are to investigate the role of oncogenes in TNF sensitivity and delineate some of the molecular mechanisms involved in TNF sensitivity and resistance. To accomplish these objectives, I transfected TNF-resistant C3H mouse embryo fibroblasts (10T1/2) with an activated Ha-ras oncogene and determined whether these cells exhibit altered sensitivity to TNF. The results indicated that 10T1/2 cells transfected with an activated Ha-ras oncogene (10T-EJ) not only produced tumors in nude mice but also exhibited extreme sensitivity to cytolysis by TNF. In contrast, 10T1/2 cells transfected with the pSV2-neo gene alone were resistant to the cytotoxic effects of TNF. I also found that TNF-induced cell death was mediated through apoptosis. The differential sensitivity of 10T1/2 and 10T-EJ cell lines to TNF was not due to differences in the number of TNF receptors on their cell surface. In addition, TNF-resistant revertants isolated from Ha-ras-transformed, TNF-sensitive cells still expressed the same amount of p21 as TNF-sensitive cells and were still tumorigenic, suggesting that Ha-ras-induced transformation and TNF sensitivity may follow different pathways. Interestingly, TNF-resistant but not sensitive cells expressed higher levels of bcl-2, c-myc, and manganese superoxide dismutase (MnSOD) mRNA following exposure to TNF. However, TNF treatment resulted in a marginal induction of p53 mRNA in both TNF-sensitive and resistant cells. Based on these results I can conclude that (i) Ha-ras oncogene induces both transformation and TNF sensitivity, (ii) TNF-induced cytotoxicity involves apoptosis, and (iii) TNF-induced upregulation of bcl-2, c-myc, and MnSOD genes is associated with TNF resistance in C3H mouse embryo fibroblasts. ^