931 resultados para Trigo mole
Resumo:
Janus structures have attracted a great deal of interest because of their fascinating properties and potential for applications. In this study, we demonstrate that hyperbranched polymers, bearing randomly placed docosyl (C22 alkyl segment) and PEG segments on their periphery, can readily reconfigure so as to segregate the alkyl and PEG segments, thereby generating Janus-type structures that we have termed Janus hybramers. DSC studies clearly reveal an endothermic transition that corresponds to the melting of the docosyl domains, while Langmuir isotherms demonstrate that these polymers form stable monolayers that appear to undergo a slight densification beyond a critical surface pressure; this suggested possible crystallization of the docosyl segments at the air-water interface. AFM studies of the transferred monolayers reveal various interesting aggregate morphologies at different surface pressures suggestive of island formation at the air-water interface; at the same time they also provided an estimate of the monolayer thickness. These Janus HBPs also form vesicles as evident from TEM and AFM studies; the AFM height of the deposited vesicles, as expected, was roughly 4 times that of the monolayer. SAXS studies revealed the formation of lamellar structures; the interlamellar spacing was largest when the relative mole fractions of docosyl and PEG segments were similar, but the spacing decreased when the mole fraction of either of these peripheral segments is substantially smaller; this suggested the possible presence of interdigitation within the domains of the minor component.
Resumo:
Nano sized copper chromite, which is used as a burn rate accelerator for solid propellants, was synthesized by the solution combustion process using citric acid and glycine as fuel. Pure spinel phase copper chromite (CuCr2O4) was synthesized, and the effect of different ratios of Cu-Cr ions in the initial reactant and various calcination temperatures on the final properties of the material were examined. The reaction time for the synthesis with glycine was lower compared to that with citric acid. The synthesized samples from both fuel cycles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), BET surface area analysis, and scanning electron microscope (SEM). Commercial copper chromite that is currently used in solid propellant formulation was also characterized by the same techniques. XRD analysis shows that the pure spinel phase compound is formed by calcination at 700 degrees C for glycine fuel cycle and between 750 and 800 degrees C for citric acid cycle. XPS results indicate the variation of the oxidation state of copper in the final compound with a change in the Cu-Cr mole ratio. SEM images confirm the formation of nano size spherical shape particles. The variation of BET surface area with calcination temperature was studied for the solution combusted catalyst. Burn rate evaluation of synthesized catalyst was carried out and compared with the commercial catalyst. The comparison between BET surface area and the burn rate depicts that surface area difference caused the variation in burn rate between samples. The reason behind the reduction in surface area and the required modifications in the process are also described.
Resumo:
Nb is one of the common refractory elements added in Ni, Co and Fe based superalloys. This lead to the formation of brittle topological close packed (tcp) mu phase, which is deleterious to the structure. It mainly grows by interdiffusion and in the present article, the interdiffusion process in different Nb-X (X=Ni, Co, Fe) systems is discussed. The activation energy for interdiffusion is lower in the Co-Nb system (173 kJ/mol) than Fe-Nb system (233 kJ/mol), which is again lower than the value found in the Ni-Nb system (319.7 kJ/mol). The mole fraction of Nb in this phase is less than Fe or Co at stoichiometric compositions in the Nb-Fe (that is Fe7Nb6) and Nb-Co (that is Co7Nb6) systems. On the other hand, the mole fraction of Nb is higher than Ni in the same phase (Ni6Nb2) in Ni-Nb system. However, in all the phases, Nb has lower diffusion rate. Possible diffusion mechanism in this phase is discussed with respect to the crystal structure.
Resumo:
Low grade thermal energy from sources such as solar, geothermal and industrial waste heat in the temperature range of 380-425 K can be converted to electrical energy with reasonable efficiency using isopentane and R-245fa. While the former is flammable and the latter has considerable global warming potential, their mixture in 0.7/0.3 mole fraction is shown to obviate these disadvantages and yet retain dominant merits of each fluid. A realistic thermodynamic analysis is carried out wherein the possible sources of irreversibilities such as isentropic efficiencies of the expander and the pump and entropy generation in the regenerator, boiler and condenser are accounted for. The performance of the system in the chosen range of heat source temperatures is evaluated. A technique of identifying the required source temperature for a given output of the plant and the maximum operating temperature of the working fluid is developed. This is based on the pinch point occurrence in the boiler and entropy generation in the boiling and superheating regions of the boiler. It is shown that cycle efficiencies of 10-13% can be obtained in the range investigated at an optimal expansion ratio of 7-10. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Unfolding of a protein often proceeds through partial unfolded intermediate states (PUIS). PUIS have been detected in several experimental and simulation studies. However, complete analyses of transitions between different PUIS and the unfolding trajectory are sparse. To understand such dynamical processes, we study chemical unfolding of a small protein, chicken villin head piece (HP-36), in aqueous dimethyl sulfoxide (DMSO) solution. We carry out molecular dynamics simulations at various solution compositions under ambient conditions. In each concentration, the initial step of unfolding involves separation of two adjacent native contacts, between phenyl alanine residues (11-18 and 7-18). This first step induces, under appropriate conditions, subsequent separation among other hydrophobic contacts, signifying a high degree of cooperativity in the unfolding process. The observed sequence of structural changes in HP-36 on increasing DMSO concentration and the observed sequence of PUIS, are in approximate agreement with earlier simulation results (in pure water) and experimental observations on unfolding of HP-36. Peculiar to water-DMSO mixture, an intervening structural transformation (around 15% of DMSO) in the binary mixture solvent retards the progression of unfolding as composition is increased. This is reflected in a remarkable nonmonotonic composition dependence of RMSD, radius of gyration and the fraction of native contacts. At 30% mole fraction of DMSO, we find the extended randomly coiled structure of the unfolded protein. The molecular mechanism of DMSO induced unfolding process is attributed to the initial preferential solvation of the hydrophobic side chain atoms through the methyl groups of DMSO, followed by the hydrogen bonding of the oxygen atom of DMSO to the exposed backbone NH groups of HP-36.
Resumo:
With the objective of investigating the direct conversion of inorganic carbonates such as CaCO3 to hydrocarbons, assisted by transition metal ions, we have carried out studies on CaCO3 in an intimate admixture with iron oxides (FeCaCO) with a wide range of Fe/Ca mole ratios (x), prepared by co-precipitation. The hydrogen reduction of FeCaCO at 673 K gives up to 23% yield of the hydrocarbons CH4, C2H4, C2H6 and C3H8, leaving solid iron residues in the form of iron metal, oxides and carbide particles. The yield of hydrocarbons increases with x and the conversion of hydrocarbons occurs through the formation of CO. While the total yield of hydrocarbons obtained by us is comparable to that in the Fischer-Tropsch synthesis, the selectivity for C-2-C-3 hydrocarbons reported here is noteworthy.
Resumo:
Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H(2)O to 1H(2)O:1DMSO and 1H(2)O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H(2)O and 2DMSO:1H(2)O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.
Resumo:
The study set out to investigate the compositional inconsistency in lanthanum zirconate system revealed the presence of nonstoichiometry in lanthanum zirconate powders when synthesized by coprecipitation route. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) investigations confirmed the depletion of La3+ ions in the system. Analysis using Vegard's law showed the La/Zr mole ratio in the sample to be around 0.45. An extra step of ultrasonication, introduced during the washing stage followed by the coprecipitation reaction, ensured the formation of stoichiometric La2Zr2O7. Noteworthy is also the difference between crystal sizes in the samples prepared by with and without ultrasonication step. This difference has been explained in light of the formation of individual nuclei and their scope of growth within the precipitate core. The differential scanning calorimetry (DSC) analyses revealed that optimum pH for the synthesis of La2Zr2O7 is about 11. The ultrasonication step was pivotal in assuring consistency in mixing and composition for the lanthanum zirconate powders.
Resumo:
Water-tert-butyl alcohol (TBA) binary mixture exhibits a large number of thermodynamic and dynamic anomalies. These anomalies are observed at surprisingly low TBA mole fraction, with x(TBA) approximate to 0.03-0.07. We demonstrate here that the origin of the anomalies lies in the local structural changes that occur due to self-aggregation of TBA molecules. We observe a percolation transition of the TBA molecules at x(TBA) approximate to 0.05. We note that ``islands'' of TBA clusters form even below this mole fraction, while a large spanning cluster emerges above that mole fraction. At this percolation threshold, we observe a lambda-type divergence in the fluctuation of the size of the largest TBA cluster, reminiscent of a critical point. Alongside, the structure of water is also perturbed, albeit weakly, by the aggregation of TBA molecules. There is a monotonic decrease in the tetrahedral order parameter of water, while the dipole moment correlation shows a weak nonlinearity. Interestingly, water molecules themselves exhibit a reverse percolation transition at higher TBA concentration, x(TBA) approximate to 0.45, where large spanning water clusters now break-up into small clusters. This is accompanied by significant divergence of the fluctuations in the size of largest water cluster. This second transition gives rise to another set of anomalies around. Both the percolation transitions can be regarded as manifestations of Janus effect at small molecular level. (C) 2014 AIP Publishing LLC.
Resumo:
The Onsager model for the secondary flow field in a high-speed rotating cylinder is extended to incorporate the difference in mass of the two species in a binary gas mixture. The base flow is an isothermal solid-body rotation in which there is a balance between the radial pressure gradient and the centrifugal force density for each species. Explicit expressions for the radial variation of the pressure, mass/mole fractions, and from these the radial variation of the viscosity, thermal conductivity and diffusion coefficient, are derived, and these are used in the computation of the secondary flow. For the secondary flow, the mass, momentum and energy equations in axisymmetric coordinates are expanded in an asymptotic series in a parameter epsilon = (Delta m/m(av)), where Delta m is the difference in the molecular masses of the two species, and the average molecular mass m(av) is defined as m(av) = (rho(w1)m(1) + rho(w2)m(2))/rho(w), where rho(w1) and rho(w2) are the mass densities of the two species at the wall, and rho(w) = rho(w1) + rho(w2). The equation for the master potential and the boundary conditions are derived correct to O(epsilon(2)). The leading-order equation for the master potential contains a self-adjoint sixth-order operator in the radial direction, which is different from the generalized Onsager model (Pradhan & Kumaran, J. Fluid Mech., vol. 686, 2011, pp. 109-159), since the species mass difference is included in the computation of the density, viscosity and thermal conductivity in the base state. This is solved, subject to boundary conditions, to obtain the leading approximation for the secondary flow, followed by a solution of the diffusion equation for the leading correction to the species mole fractions. The O(epsilon) and O(epsilon(2)) equations contain inhomogeneous terms that depend on the lower-order solutions, and these are solved in a hierarchical manner to obtain the O(epsilon) and O(epsilon(2)) corrections to the master potential. A similar hierarchical procedure is used for the Carrier-Maslen model for the end-cap secondary flow. The results of the Onsager hierarchy, up to O(epsilon(2)), are compared with the results of direct simulation Monte Carlo simulations for a binary hard-sphere gas mixture for secondary flow due to a wall temperature gradient, inflow/outflow of gas along the axis, as well as mass and momentum sources in the flow. There is excellent agreement between the solutions for the secondary flow correct to O(epsilon(2)) and the simulations, to within 15 %, even at a Reynolds number as low as 100, and length/diameter ratio as low as 2, for a low stratification parameter A of 0.707, and when the secondary flow velocity is as high as 0.2 times the maximum base flow velocity, and the ratio 2 Delta m/(m(1) + m(2)) is as high as 0.5. Here, the Reynolds number Re = rho(w)Omega R-2/mu, the stratification parameter A = root m Omega R-2(2)/(2k(B)T), R and Omega are the cylinder radius and angular velocity, m is the molecular mass, rho(w) is the wall density, mu is the viscosity and T is the temperature. The leading-order solutions do capture the qualitative trends, but are not in quantitative agreement.
Resumo:
Two series of periodically clickable polyesters were prepared; one of them carries alkylene segments along its backbone, whereas the other carries poly(ethylene glycol) (PEG) segments. These polyesters were clicked with either MPEG-350 azide or docosyl (C22) azide to yield periodically grafted amphiphilic copolymers (PGACs) carrying either flexible hydrophilic or crystallizable hydrophobic backbone segments. The immiscibility between hydrocarbon and PEG segments causes both of these systems to fold in either a zigzag or hairpin-like conformation; the hairpin-like conformation appears to be preferred when flexible PEG segments are present in the backbone. The folded chains further reorganize in the solid state to develop a lamellar morphology that permits the collocation of the PEG and hydrocarbon (HC) segments within alternate domains; evidence for the self-segregation was gained from DSC, SAXS, and AFM studies. SAXS studies revealed the formation of an extended lamellar structure, whereas AFM images showed uniform layered morphology with layer heights that matched reasonably well with the interlamellar spacing obtained from the SAXS study. Labeling One representative PGAC, carrying crystallizable long alkylene segments in the backbone and pendant PEG-350 side chains, with a small mole fraction of pyrene fluorophore permitted the examination of the conformational transition that occurs upon going from a good to a poor solvent; this single-chain folded conformation, we postulate, is the intermediate that organizes into the lamellar morphology.
Resumo:
Thin films of conducting palladium selenide phases (Pd17Se15 and Pd7Se4) are prepared using a single source molecular precursor by thermolysis. Varying the mole ratios of palladium and selenium precursors results in palladium organo-selenolate complexes which on thermolysis at different temperatures yield Pd17Se15 and Pd7Se4 phases that are very stable and adherent to the substrate. The organo-selenolate complexes are characterized using small angle XRD, Se-77 NMR and thermogravimetric analysis (TGA). The palladium selenide films are characterized by various techniques such as XRD, XPS, TEM and SEM. Electrical conductivities of the films are determined using the four probe method. The strong adherence of the films to glass substrates coupled with high corrosion resistant behavior towards strong acid and alkaline environments render them to be very effective as electrocatalysts. The catalytic activity towards the I-3(-)/I- redox couple, which is an important reaction in the regeneration of the dye in a dye-sensitized solar cell, is studied. Between the two phases, the Pd17Se15 film shows superior activity as the counter electrode for dye sensitized solar cells with a photocurrent conversion efficiency of 7.45%.
Resumo:
The solubilities of 10-undecenoic acid and geraniol in supercritical carbon dioxide were measured at 308, 313,323 and 333K, and at pressures of 10-18 MPa. Solubilities (in mole fraction),ranged from 0.4 x 10(-3) to 17.4 x 10(-3) for 10-undecenoic acid and 2.7 x 10(-3) to 25 x 10(-3) for geraniol, respectively. The AARD was around 11% and 5% for these models for 10-undecenoic acid and geraniol, respectively. The solubilities of both compounds showed retrograde behavior wherein the solubilities decrease with temperature at isobaric conditions. The solubility of geraniol was higher than 10-undecenoic acid at all investigated temperatures and pressures. The data were found to be self consistent based on the Mendez-Santiago model. New models based on association theory using van Laar and Margules activity coefficient models for solute in liquid phase were derived, and used to correlate the solubilities. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Heterostructures of two-dimensional (2D) layered materials are increasingly being explored for electronics in order to potentially extend conventional transistor scaling and to exploit new device designs and architectures. Alloys form a key underpinning of any heterostructure device technology and therefore an understanding of their electronic properties is essential. In this paper, we study the intrinsic electron mobility in few-layer MoxW1-xS2 as limited by various scattering mechanisms. The room temperature, energy-dependent scattering times corresponding to polar longitudinal optical (LO) phonon, alloy and background impurity scattering mechanisms are estimated based on the Born approximation to Fermi's golden rule. The contribution of individual scattering rates is analyzed as a function of 2D electron density as well as of alloy composition in MoxW1-xS2. While impurity scattering limits the mobility for low carrier densities (<2-4x10(12) cm(-2)), LO polar phonon scattering is the dominant mechanism for high electron densities. Alloy scattering is found to play a non-negligible role for 0.5 < x < 0.7 in MoxW1-xS2. The LO phonon-limited and impurity-limited mobilities show opposing trends with respect to alloy mole fractions. The understanding of electron mobility in MoxW1-xS2 presented here is expected to enable the design and realization of heterostructures and devices based on alloys of MoS2 andWS(2).
Resumo:
The solubilities of two lipid derivatives, geranyl butyrate and 10-undecen-1-ol, in SCCO2 (supercritical carbon dioxide) were measured at different operating conditions of temperature (308.15 to 333.15 K) and pressure (10 to 18 MPa). The solubilities (in mole fraction) ranged from 2.1 x 10(-3) to 23.2 x 10(-3) for geranyl butyrate and 2.2 x 10(-3) to 25.0 x 10(-3) for 10-undecen-1-ol, respectively. The solubility data showed a retrograde behavior in the pressure and temperature range investigated. Various combinations of association and solution theory along with different activity coefficient models were developed. The experimental data for the solubilities of 21 liquid solutes along with geranyl butyrate and 10-undecen-1-ol were correlated using both the newly derived models and the existing models. The average deviation of the correlation of the new models was below 15%.