924 resultados para Transformer voltage equations
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A mapping scheme is presented which takes quantum operators associated to bosonic degrees of freedom into complex phase space integral kernel representatives. The procedure consists of using the Schrödinger squeezed state as the starting point for the construction of the integral mapping kernel which, due to its inherent structure, is suited for the description of second quantized operators. Products and commutators of operators have their representatives explicitly written which reveal new details when compared to the usual q-p phase space description. The classical limit of the equations of motion for the canonical pair q-p is discussed in connection with the effect of squeezing the quantum phase space cellular structure. © 1993.
Resumo:
A new double channel field-effect structure based on delta-doping technology is proposed Resonant tunneling between the channels is employed to control the transport along the interface plane. A realistic simulation is performed for several temperatures. We solve the Schrodinger and Poisson equations self-consistently and have found that a large peak-to-valley ratio in the current-voltage characteristic occurs at the whole range of temperature investigated this effect indicates the potential application of this phenomenon for switching devices, where the transversal conductivity can be controlled due to the coupling between states belonging to different channels.
Resumo:
Results of the analysis of dynamic behavior of flashover phenomenon on the high voltage-polluted insulators are presented. These results were taken from a mathematical and an experimental model that introduce the variable thickness influence of the layer pollution deposited on the high-voltage insulator surface. Analysis of the flashover was done by way of introducing a variation in the thickness of the channel of Obenaus' model, simulating a layer pollution of variable thickness. The objective was to obtain a better reproduction of the real layer pollution deposited on the insulator that works in the polluted regions. Two types of thickness variations were used: a sudden variation, using a step; and a soft variation, using a ramp; that were put along the way of the discharge. Comparison between the mathematical and experimental models showed that introduction of a ramp makes Obenaus' model more efficient in analyzing behavior of flashover phenomenon.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The analysis of the feasibility and economics of amorphous core power transformers for induction heating applications in the field 10-50 kHz is developped. The results obtained on a 25 kHz-150 kVA concentric winding trial unit are presented. © 1990.
Resumo:
An infinite hierarchy of solvable systems of purely differential nonlinear equations is introduced within the framework of asymptotic modules. Eacy system consists of (2+1)-dimensional evolution equations for two complex functions and of quite strong differential constraints. It may be interpreted formally as an integro-differential equation in (1+1) dimensions. © 1988.
Resumo:
This work proposes the use of a simple voltage divider circuit composed by one potentiometer and one resistor to simulate the behavior of the electrical output signal of linear and nonlinear sensors. It is a low cost way to implement practical experiments in classroom and it also enables the analysis of interesting topics of electricity. This work induces naturally to a class guide where students can build and characterize a voltage divider to explore several concepts about sensors output signal. As the result of this teaching activity it is expected that students understand fundamentals of voltage divider, potentiometer operation, fundamental sensor characteristics, transfer function, and, besides, associate directly concepts of physics and mathematics with a practical approach.
Resumo:
This paper shows the modeling and control of a single-phase full-bridge inverter with high-frequency transformer that may be used as part of a two-stage converter with transformerless DC-DC side or as a single-stage converter (simple DC-AC converter) for grid-connected PV applications. The inverter is modeled in order to obtain a small-signal transfer function used to design the P+Resonant current controller. A highfrequency step-up transformer results in reduced voltage switches and better efficiency compared with converters in which the transformer is used on the DC-DC side. Simulations and experimental results with a 200 W prototype are shown. 1
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
“It is my contention at this point that when race relations on campuses get better, it is in spite of, not because of, the proliferation of jargon-based rhetoric about diversity.”
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A low-cost circuit was developed for stable and efficient maximum power point (MPP) tracking in autonomous photo voltaic-motor systems with variable-frequency drives (VFDs). The circuit is made of two resistors, two capacitors, and two Zener diodes. Its input is the photovoltaic (PV) array voltage and its output feeds the proportional-integral-derivative (PID) controller usually integrated into, the drive. The steady-state frequency-voltage oscillations induced by the circuit were treated in a simplified mathematical model, which was validated by widely characterizing a PV-powered centrifugal pump. General procedures for circuit and controller tuning were recommended based on model equations. The tracking circuit presented here is widely applicable to PV-motor system with VFDs, offering an. efficient open-access technology of unique simplicity. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
By performing density functional theory calculations we show that it is possible to make the electronic bandgap in bilayer graphene supported on hexagonal boron nitride (h-BN) substrates tunable. We also show that, under applied electric fields, it is possible to insert states from h-BN into the bandgap, which generate a conduction channel through the substrate making the system metallic. In addition, we verify that the breakdown voltage strongly depends on the number of h-BN layers. We also show that both the breakdown voltage and the bandgap tuning are independent of the h-BN stacking order.