985 resultados para Trans-Alaska Pipeline (Alaska)
Resumo:
The initiation of pipeline spanning involves the coupling between the flow over the pipeline and the seepage-flow in the soil underneath the pipeline. The pipeline spanning initiation is experimentally observed and discussed in this article. It is qualitatively indicated that the pressure-drop induced soil seepage failure is the predominant cause for pipeline spanning initiation. A flow-pipe-seepage sequential coupling Finite Element Method (FEM) model is proposed to simulate the coupling between the water flow-field and the soil seepage-field. A critical hydraulic gradient is obtained for oblique seepage failure of the sand in the direction tangent to the pipe. Parametric study is performed to investigate the effects of inflow velocity, pipe embedment on the pressure-drop, and the effects of soil internal friction angle and pipe embedment-to-diameter ratio on the critical flow velocity for pipeline spanning initiation. It is indicated that the dimensionless critical flow velocity changes approximately linearly with the soil internal friction angle for the submarine pipeline partially-embedded in a sandy seabed.
Resumo:
This paper considers the lift forces acting on a pipeline with a small gap between the pipeline and the plane bottom or scoring bottom. A more reasonable fluid force on the pipeline has been obtained by applying the knowledge of modified potential theory (MPT), which includes the influences of the downstream wake. By finite element method, an iteration procedure is used to solve problems of the nonlinear fluid-structure interaction. Comparing the deflection and the stress distributions with the difference sea bottoms, the failure patterns of a spanning pipeline have been discussed. The results are essential for engineers to assess pipeline stability.
Resumo:
红发夫酵母分离于北美西部高山地区和日本一些岛屿上落叶树的渗出液中,因其所产主要色素为在水产养殖、食品和医药工业有广阔应用前景的虾青素而成为研究的热点。本论文对红发夫酵母Phaffia rhodozyma 的生长特性、培养参数与培养基组分对生长和虾青素积累的影响及其优化、虾青素合成的调节控制、虾青素的提取测定及红发夫酵母耐高温菌种的诱变进行了系统的研究。 虾青素是红发夫酵母的胞内色素,要对其进行分析首先要对红发夫酵母进行破壁处理,实验发现二甲亚砜是最有效的破壁溶剂,用氯仿和丙酮可以有效地把类胡萝卜素从二甲亚砜破壁后的红发夫酵母细胞中提取出来。 在固定摇床转速为200 rpm,温度为20 ℃的条件下,当种龄为36 h,以10%的接种量接入装液量为30 mL的250 mL三角瓶,初始pH为5.5时最有利于红发夫酵母的生长及类胡萝卜素的合成。 本实验中红发夫酵母最佳利用碳、氮源分别为蔗糖和蛋白胨,但蛋白胨价格昂贵,不适宜作单一氮源,因此使用硫酸铵和酵母膏作为复合氮源。 本论文采用了BP神经网络结合遗传算法的方法来优化红发夫酵母的发酵培养基,得到红发夫酵母发酵培养基的最佳配比为:蔗糖45.10 g/L、硫酸铵3.00 g/L、硫酸镁0.80 g/L、磷酸二氢钾1.40 g/L、酵母膏3.00 g/L、氯化钙0.50 g/L,使用优化后的培养基发酵类胡萝卜素产量达到8.20 mg/L,干重达到9.47 g/L,类胡萝卜素的产量比起始培养基提高了95.90%,干重提高了89.40%。 从代谢途径出发对红发夫酵母合成虾青素调控调控,选择谷氨酸、乙醇、VB1作为添加剂,通过正交试验设计得出三者添加水平分别为0.2 g/L,0.1% (V/V),10 mg/L时,类胡萝卜素产量提高了25.73%,达到了10.31mg/L。 通过上述优化培养,本论文中红发夫酵母的虾青素产量从1.33 mg/L提高到9.12 mg/L,产量提高了6.86倍;总类胡萝卜素产量从4.23 mg/L提高到10.31 mg/L,产量提高了2.44倍;细胞干重从5.00 g/L提高到11.35 g/L,提高了2.27倍,总体提高效果显著。 红发夫酵母属于中低温菌,本论文采用紫外复合诱变的方式,通过高温筛选,得到一株能在35 ℃下能生长的突变株,但所产类胡萝卜素中虾青素所占比例很小,可能是诱变改变了红发夫酵母的代谢途径,阻断了虾青素的合成。 Phaffia rhodozyma is a heterobasidiomyceteous yeast that was originally isolated from the slime fluxes of brich tree wounds in mountain regions of northern Japan and southern Alaska. Phaffia rhodozyma produces astaxanthin as its principal carotenoid pigment, which has potential applications in acquaculture, food and pharmaceutical industry. This paper researched ways to break cell, analysis of astaxanthin, characteristics of growth, culture parameters and the effects of components of medium on growth and astaxanthin formation , optimization of culture medium, control of astaxanthin synthesis and mutagenesis of Phaffia rhodozyma. It is necessary to disrupt the yeast cell for extracting astaxanthin considering the yeast accumulating carotenoids in cell. Dimethyisulphoxide was the most effective solvent for breaking the yeast cell; acetone and chloroform were effective to extract carotenoids out of the disrupted cell. The optimum pH for growth and carotenoids synthesis is 5.5, the optimum medium volume is 30 mL (in 250 mL flask), the optimum culture time of inoculum is 36 h, the optimum inoculum concentration is 10%. The research on culture medium showed: sucrose is the best one of 6 carbon sources for growth and astaxanthin synthesis. Peptone is the best nitrogen source for growth and astaxanthin synthesis. Uniform Design was used for trial design of the formula medium components, then back-propagation neural network was established to modeling the relationships between the carotenoid yield and the concentration of medium components. Genetic algorithm (GA) was used for global optimization of the model. The optimum combination of the medium was obtained: sucrose 45.10 g/L, ammonium sulfate 3.00 g/L, magnesium sulfate 0.80 g/L, potassium dihydrogen phosphate 1.40 g/L, yeast extract 3.00 g/L, calcium chloride 0.50 g/L. The yield of carotenoid reached 8.20 mg/L, which was 95.90% higher than that of the original medium. Glu, VB1 and ethanol were selected as fermentation addictives, after Orthogonal Test, the carotenoid contents increased by 25.73% when adding 0.16 g/L Glu, VB1 10 mg/L and ethanol 0.1% (V/V). After the above optimization, the astaxanthin content increased 6.86 folds, which is 9.12 mg/L. The carotenoids content increased 2.44 folds, which is 10.31 mg/L. The biomass increased 2.27 folds, which is 11.35 g/L. Phaffia rhodozyma grows in the mild temperature range of 0 to 27 ℃, in this work, a thermotolerant mutant was selected through UV-irradiation. It can grows at 35 ℃, and showed increased carotenoid content. The optimal growth temperature for this mutant is 30 ℃. But the mutant can only produce carotenoids with little astaxanthin accumulation.
Resumo:
National Natural Science Foundation of China [30590381]; Knowledge Innovation Program of the Chinese Academy of Sciences [KZCX2YW-432]; International Partnership Project
Resumo:
A series of new rare-earth metal bis(alkyl) complexes [L(1-3)Ln(CH2SiMe3)(2)(THF)(n)] (L-1 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H2Me3-2,4,6: Ln = Sc, n = 1 (1a); Ln = Lu, n = 1 (1b); L-2 = MeC4H2SCH2NC6H4(Ph)(2)P=NC6H3Et2-2,6: Ln = Sc, n = 1 (2a); Ln = Lu, n = 1 (2b); Ln = Y, n = 1 (2c); L-3 = MeC4H2SCH2NC6H4(Ph)(2)P=(NC6H3Pr2)-Pr-i-2,6: Ln = Sc, n = 0 (3a)) and (LSc)-Sc-4(CH2SiMe3)(2()THF) (4a) (L-4 = C6H5CH2NC6H4(Ph)(2)P=NC6H3Et2-2,6) have been prepared by reaction of rare-earth metal tris(alkyl)s with the corresponding HL1-4 ligands via alkane elimination.
Resumo:
Fe(III), Cr(III), Fe(II), Co(II) and Ni(II) chloride complexes supported by 2,6-bis[1-(iminophenyl)ethyl]pyridine have been synthesized and characterized along with single crystal X-ray diffraction. These complexes, in combination with MAO, have been examined in butadiene polymerization. The catalytic activity and regioselectivity are strongly controlled by metal center and cocatalyst (MAO/Co ratio dependent in the case of Co(II) complex). The activity decreases in the order of Fe(III) > Co(II) > Cr(III) approximate to Ni (II) complexes, in consistent with the space around the metal center. Polybutadiene with different microstructure content, from high trans-1,4 units (88-95% for iron(III) and Cr(III)), medium trans-1,4 and cis-1,4 units (55% and 35%, respectively, for iron(II)) to high cis-1,4 units 79% for Co(II) and 97% for Ni(II) call be easily achieved by varying of the metal center.
Resumo:
The cloud-point temperatures (T-c1's) of ti-ans-decahydronaphthalene (TD)/polystyrene (PS, M-w = 270 kg/mol) solutions were determined by fight scattering measurements over a range of temperatures (1-16 degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol% polymer). The system phase separates upon cooling and the T-c1 was found to increase with the rising pressure for the constant composition. In the absence of special effects this finding indicates positive excess volumes. The special attention was paid to the demixing temperatures as a function of the pressure for the different polymer solutions and the plots in the T-volume fraction plane and P-volume fraction plane. The cloud-point curves of polymer solutions under changing pressures were observed for different compositions, demonstrates that the TD/PS system exhibits UCST (phase separation upon cooling) behavior. With this data the phase diagrams under pressure were calculated applying the Sanchez-Lacombe (SL) lattice fluid theory. Furthermore, the cause of phase separation, i.e., the influence of Flory-Huggins (FH) interaction parameter under pressure was investigated.
Resumo:
Cis-1,2,3,4-cyclohexanetetracarboxylic dianhydride (cis-1,2,3,4-CHDA) was synthesized. It was found that under such conditions as heating or boiling in acetic anhydride, cis-1,2,3,4-CHDA could be converted to its trans-isomer. The process of thermal isomerization was monitored by H-1 NMR spectra and the mechanism of conversion was proposed. Their absolute structures of cis- and trans-1,2,3,4-CHDAs were elucidated by single crystal X-ray diffraction. The polycondensations of cis- and trans-1,2,3,4-CHDAs with aromatic diamines such as 4,4'-oxydianiline (ODA), 4,4'-methylenedianiline (MDA), 4,4'-diamino-3,3'-dimethyldiphenylmethane (DMMDA), 4,4'-bis(4-aminophenoxy)benzene (TPEQ), 2,2-bis[4-(4-aminophenoxy)phenyl] propane (BAPP) were studied. It is easy to obtain higher molecular weight polyimides from trans-1,2,3,4-CHDA using conventional one-step or two-step methods. However, higher molecular weight polyimides derived from cis-1,2,3,4-CHDA could not be prepared by the usual methods (solid content ca. 10%) owing to the trend of forming cyclic oligomers.
Resumo:
A modified Wittig polycondensation was developed by replacing the bulky -PPh3 with -PBu3 ylide. Our studies suggested that the modified polymerization dramatically enhances trans-selectivity due to the decreased 1.3-steric interaction between butyl chain and triphenylamine group, together with the 1,2-steric interaction between the phenyl ring of the ylide and the triphenylamine group of the aldehyde. Moreover, the method also enhances high-molecular weight products by increasing the activity and solubility of the ylide.
Resumo:
The structure of the title compound, [Cu2Cl2(C12H10N2)](n), contains infinite CuCl staircase-like chains, which lie about inversion centres. The trans-1,2-di-4-pyrid-ylethyl-ene mol-ecules also lie about inversion centres and connect the CuCl chains through Cu-N coordination bonds into a two-dimensional organic-inorganic hybrid network. The planar sheets are stacked along the c axis and associated through weak C-H center dot center dot center dot Cl inter-actions. The results show a reliable structural motif with controllable separation of the CuCl chains by variation of the length of the ligand.