974 resultados para Tower shadow


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Very high-resolution Synthetic Aperture Radar sensors represent an alternative to aerial photography for delineating floods in built-up environments where flood risk is highest. However, even with currently available SAR image resolutions of 3 m and higher, signal returns from man-made structures hamper the accurate mapping of flooded areas. Enhanced image processing algorithms and a better exploitation of image archives are required to facilitate the use of microwave remote sensing data for monitoring flood dynamics in urban areas. In this study a hybrid methodology combining radiometric thresholding, region growing and change detection is introduced as an approach enabling the automated, objective and reliable flood extent extraction from very high-resolution urban SAR images. The method is based on the calibration of a statistical distribution of “open water” backscatter values inferred from SAR images of floods. SAR images acquired during dry conditions enable the identification of areas i) that are not “visible” to the sensor (i.e. regions affected by ‘layover’ and ‘shadow’) and ii) that systematically behave as specular reflectors (e.g. smooth tarmac, permanent water bodies). Change detection with respect to a pre- or post flood reference image thereby reduces over-detection of inundated areas. A case study of the July 2007 Severn River flood (UK) observed by the very high-resolution SAR sensor on board TerraSAR-X as well as airborne photography highlights advantages and limitations of the proposed method. We conclude that even though the fully automated SAR-based flood mapping technique overcomes some limitations of previous methods, further technological and methodological improvements are necessary for SAR-based flood detection in urban areas to match the flood mapping capability of high quality aerial photography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hybrid Monte Carlo (HMC) method is a popular and rigorous method for sampling from a canonical ensemble. The HMC method is based on classical molecular dynamics simulations combined with a Metropolis acceptance criterion and a momentum resampling step. While the HMC method completely resamples the momentum after each Monte Carlo step, the generalized hybrid Monte Carlo (GHMC) method can be implemented with a partial momentum refreshment step. This property seems desirable for keeping some of the dynamic information throughout the sampling process similar to stochastic Langevin and Brownian dynamics simulations. It is, however, ultimate to the success of the GHMC method that the rejection rate in the molecular dynamics part is kept at a minimum. Otherwise an undesirable Zitterbewegung in the Monte Carlo samples is observed. In this paper, we describe a method to achieve very low rejection rates by using a modified energy, which is preserved to high-order along molecular dynamics trajectories. The modified energy is based on backward error results for symplectic time-stepping methods. The proposed generalized shadow hybrid Monte Carlo (GSHMC) method is applicable to NVT as well as NPT ensemble simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have incorporated a semi-mechanistic isoprene emission module into the JULES land-surface scheme, as a first step towards a modelling tool that can be applied for studies of vegetation – atmospheric chemistry interactions, including chemistry-climate feedbacks. Here, we evaluate the coupled model against local above-canopy isoprene emission flux measurements from six flux tower sites as well as satellite-derived estimates of isoprene emission over tropical South America and east and south Asia. The model simulates diurnal variability well: correlation coefficients are significant (at the 95 % level) for all flux tower sites. The model reproduces day-to-day variability with significant correlations (at the 95 % confidence level) at four of the six flux tower sites. At the UMBS site, a complete set of seasonal observations is available for two years (2000 and 2002). The model reproduces the seasonal pattern of emission during 2002, but does less well in the year 2000. The model overestimates observed emissions at all sites, which is partially because it does not include isoprene loss through the canopy. Comparison with the satellite-derived isoprene-emission estimates suggests that the model simulates the main spatial patterns, seasonal and inter-annual variability over tropical regions. The model yields a global annual isoprene emission of 535 ± 9 TgC yr−1 during the 1990s, 78 % of which from forested areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In late February 2010 the extraordinary windstorm Xynthia crossed over Southwestern and Central Europe and caused severe damage, affecting particularly the Spanish and French Atlantic coasts. The storm was embedded in uncommon large-scale atmospheric and boundary conditions prior to and during its development, namely enhanced sea surface temperatures (SST) within the low-level entrainment zone of air masses, an unusual southerly position of the polar jet stream, and a remarkable split jet structure in the upper troposphere. To analyse the processes that led to the rapid intensification of this exceptional storm originating close to the subtropics (30°N), the sensitivity of the cyclone intensification to latent heat release is determined using the regional climate model COSMO-CLM forced with ERA-Interim data. A control simulation with observed SST shows that moist and warm air masses originating from the subtropical North Atlantic were involved in the cyclogenesis process and led to the formation of a vertical tower with high values of potential vorticity (PV). Sensitivity studies with reduced SST or increased laminar boundary roughness for heat led to reduced surface latent heat fluxes. This induced both a weaker and partly retarded development of the cyclone and a weakening of the PV-tower together with reduced diabatic heating rates, particularly at lower and mid levels. We infer that diabatic processes played a crucial role during the phase of rapid deepening of Xynthia and thus to its intensity over the Southeastern North Atlantic. We suggest that windstorms like Xynthia may occur more frequently under future climate conditions due to the warming SSTs and potentially enhanced latent heat release, thus increasing the windstorm risk for Southwestern Europe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new method to calculate sky view factors (SVFs) from high resolution urban digital elevation models using a shadow casting algorithm. By utilizing weighted annuli to derive SVF from hemispherical images, the distance light source positions can be predefined and uniformly spread over the whole hemisphere, whereas another method applies a random set of light source positions with a cosine-weighted distribution of sun altitude angles. The 2 methods have similar results based on a large number of SVF images. However, when comparing variations at pixel level between an image generated using the new method presented in this paper with the image from the random method, anisotropic patterns occur. The absolute mean difference between the 2 methods is 0.002 ranging up to 0.040. The maximum difference can be as much as 0.122. Since SVF is a geometrically derived parameter, the anisotropic errors created by the random method must be considered as significant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vertical divergence of CO2 fluxes is observed over two Midwestern AmeriFlux forest sites. The differences in ensemble averaged hourly CO2 fluxes measured at two heights above canopy are relatively small (0.2–0.5 μmol m−2 s−1), but they are the major contributors to differences (76–256 g C m−2 or 41.8–50.6%) in estimated annual net ecosystem exchange (NEE) in 2001. A friction velocity criterion is used in these estimates but mean flow advection is not accounted for. This study examines the effects of coordinate rotation, averaging time period, sampling frequency and co-spectral correction on CO2 fluxes measured at a single height, and on vertical flux differences measured between two heights. Both the offset in measured vertical velocity and the downflow/upflow caused by supporting tower structures in upwind directions lead to systematic over- or under-estimates of fluxes measured at a single height. An offset of 1 cm s−1 and an upflow/downflow of 1° lead to 1% and 5.6% differences in momentum fluxes and nighttime sensible heat and CO2 fluxes, respectively, but only 0.5% and 2.8% differences in daytime sensible heat and CO2 fluxes. The sign and magnitude of both offset and upflow/downflow angle vary between sonic anemometers at two measurement heights. This introduces a systematic and large bias in vertical flux differences if these effects are not corrected in the coordinate rotation. A 1 h averaging time period is shown to be appropriate for the two sites. In the daytime, the absolute magnitudes of co-spectra decrease with height in the natural frequencies of 0.02–0.1 Hz but increase in the lower frequencies (<0.01 Hz). Thus, air motions in these two frequency ranges counteract each other in determining vertical flux differences, whose magnitude and sign vary with averaging time period. At night, co-spectral densities of CO2 are more positive at the higher levels of both sites in the frequency range of 0.03–0.4 Hz and this vertical increase is also shown at most frequencies lower than 0.03 Hz. Differences in co-spectral corrections at the two heights lead to a positive shift in vertical CO2 flux differences throughout the day at both sites. At night, the vertical CO2 flux differences between two measurement heights are 20–30% and 40–60% of co-spectral corrected CO2 fluxes measured at the lower levels of the two sites, respectively. Vertical differences of CO2 flux are relatively small in the daytime. Vertical differences in estimated mean vertical advection of CO2 between the two measurement heights generally do not improve the closure of the 1D (vertical) CO2 budget in the air layer between the two measurement heights. This may imply the significance of horizontal advection. However, a reliable assessment of mean advection contributions in annual NEE estimate at these two AmeriFlux sites is currently an unsolved problem.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article considers cinematic time in James Benning’s film, casting a glance (2007), in relation to its subject, Robert Smithson’s 1970 earthwork Spiral Jetty, and his film of the same name. The radicalism of Smithson’s thinking on time has been widely acknowledged, and his influence continues to pervade contemporary artistic practice. The relationship of Benning’s films with this legacy may appear somewhat oblique, given their apparent phenomenological rendition of ‘real time’. However, closer examination of Benning’s formal strategies reveals a more complex temporal construction, characterized by uncertain intervals that interrupt the folding of cinematic time into the flow of consciousness. Smithson’s film uses cinematic analogy to gesture towards vast reaches of geological time; Benning’s film creates a simulated timescale to evoke the short history of the earthwork itself. Smithson’s embrace of the entropic was a counter-cultural stance at the end of the1960s, but under the shadow of ecological disaster, this orientation has come to appear melancholy and romantic rather than radical. Benning’s film returns the jetty to anthropic time, but raises questions about the ways we inhabit time. His practice of working with ‘borrowed time’ is particularly suited to the cultural and historical moment of his later work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flooding is a particular hazard in urban areas worldwide due to the increased risks to life and property in these regions. Synthetic Aperture Radar (SAR) sensors are often used to image flooding because of their all-weather day-night capability, and now possess sufficient resolution to image urban flooding. The flood extents extracted from the images may be used for flood relief management and improved urban flood inundation modelling. A difficulty with using SAR for urban flood detection is that, due to its side-looking nature, substantial areas of urban ground surface may not be visible to the SAR due to radar layover and shadow caused by buildings and taller vegetation. This paper investigates whether urban flooding can be detected in layover regions (where flooding may not normally be apparent) using double scattering between the (possibly flooded) ground surface and the walls of adjacent buildings. The method estimates double scattering strengths using a SAR image in conjunction with a high resolution LiDAR (Light Detection and Ranging) height map of the urban area. A SAR simulator is applied to the LiDAR data to generate maps of layover and shadow, and estimate the positions of double scattering curves in the SAR image. Observations of double scattering strengths were compared to the predictions from an electromagnetic scattering model, for both the case of a single image containing flooding, and a change detection case in which the flooded image was compared to an un-flooded image of the same area acquired with the same radar parameters. The method proved successful in detecting double scattering due to flooding in the single-image case, for which flooded double scattering curves were detected with 100% classification accuracy (albeit using a small sample set) and un-flooded curves with 91% classification accuracy. The same measures of success were achieved using change detection between flooded and un-flooded images. Depending on the particular flooding situation, the method could lead to improved detection of flooding in urban areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Refractivity changes (ΔN) derived from radar ground clutter returns serve as a proxy for near-surface humidity changes (1 N unit ≡ 1% relative humidity at 20 °C). Previous studies have indicated that better humidity observations should improve forecasts of convection initiation. A preliminary assessment of the potential of refractivity retrievals from an operational magnetron-based C-band radar is presented. The increased phase noise at shorter wavelengths, exacerbated by the unknown position of the target within the 300 m gate, make it difficult to obtain absolute refractivity values, so we consider the information in 1 h changes. These have been derived to a range of 30 km with a spatial resolution of ∼4 km; the consistency of the individual estimates (within each 4 km × 4 km area) indicates that ΔN errors are about 1 N unit, in agreement with in situ observations. Measurements from an instrumented tower on summer days show that the 1 h refractivity changes up to a height of 100 m remain well correlated with near-surface values. The analysis of refractivity as represented in the operational Met Office Unified Model at 1.5, 4 and 12 km grid lengths demonstrates that, as model resolution increases, the spatial scales of the refractivity structures improve. It is shown that the magnitude of refractivity changes is progressively underestimated at larger grid lengths during summer. However, the daily time series of 1 h refractivity changes reveal that, whereas the radar-derived values are very well correlated with the in situ observations, the high-resolution model runs have little skill in getting the right values of ΔN in the right place at the right time. This suggests that the assimilation of these radar refractivity observations could benefit forecasts of the initiation of convection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The REgents PARk and Tower Environmental Experiment (REPARTEE) comprised two campaigns in London in October 2006 and October/November 2007. The experiment design involved measurements at a heavily trafficked roadside site, two urban background sites and an elevated site at 160–190 m above ground on the BT Tower, supplemented in the second campaign by Doppler lidar measurements of atmospheric vertical structure. A wide range of measurements of airborne particle physical metrics and chemical composition were made as well as measurements of a considerable range of gas phase species and the fluxes of both particulate and gas phase substances. Significant findings include (a) demonstration of the evaporation of traffic-generated nanoparticles during both horizontal and vertical atmospheric transport; (b) generation of a large base of information on the fluxes of nanoparticles, accumulation mode particles and specific chemical components of the aerosol and a range of gas phase species, as well as the elucidation of key processes and comparison with emissions inventories; (c) quantification of vertical gradients in selected aerosol and trace gas species which has demonstrated the important role of regional transport in influencing concentrations of sulphate, nitrate and secondary organic compounds within the atmosphere of London; (d) generation of new data on the atmospheric structure and turbulence above London, including the estimation of mixed layer depths; (e) provision of new data on trace gas dispersion in the urban atmosphere through the release of purposeful tracers; (f) the determination of spatial differences in aerosol particle size distributions and their interpretation in terms of sources and physico-chemical transformations; (g) studies of the nocturnal oxidation of nitrogen oxides and of the diurnal behaviour of nitrate aerosol in the urban atmosphere, and (h) new information on the chemical composition and source apportionment of particulate matter size fractions in the atmosphere of London derived both from bulk chemical analysis and aerosol mass spectrometry with two instrument types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticles emitted from road traffic are the largest source of respiratory exposure for the general public living in urban areas. It has been suggested that adverse health effects of airborne particles may scale with airborne particle number, which if correct, focuses attention on the nanoparticle (less than 100 nm) size range which dominates the number count in urban areas. Urban measurements of particle size distributions have tended to show a broadly similar pattern dominated by a mode centred on 20–30 nm diameter emitted by diesel engine exhaust. In this paper we report the results of measurements of particle number concentration and size distribution made in a major London park as well as on the BT Tower, 160 m aloft. These measurements taken during the REPARTEE project (Regents Park and BT Tower experiment) show a remarkable shift in particle size distributions with major losses of the smallest particle class as particles are advected away from the traffic source. In the Park, the traffic related mode at 20–30 nm diameter is much reduced with a new mode at <10 nm. Size distribution measurements also revealed higher number concentrations of sub-50 nm particles at the BT Tower during days affected by higher turbulence as determined by Doppler Lidar measurements and are indicative of loss of nanoparticles from air aged during less turbulent conditions. These results are suggestive of nanoparticle loss by evaporation, rather than coagulation processes. The results have major implications for understanding the impacts of traffic-generated particulate matter on human health.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extent of the surface area sunlit is critical for radiative energy exchanges and therefore for a wide range of applications that require urban land surface models (ULSM), ranging from human comfort to weather forecasting. Here a computational demanding shadow casting algorithm is used to assess the capability of a simple single-layer urban canopy model, which assumes an infinitely long rotating canyon (ILC), to reproduce sunlit areas on roof and roads over central London. Results indicate that the sunlit roads areas are well-represented but somewhat smaller using an ILC, while sunlit roofs areas are consistently larger, especially for dense urban areas. The largest deviations from real world sunlit areas are found for roofs during mornings and evenings. Indications that sunlit fractions on walls are overestimated using an ILC during mornings and evenings are found. The implications of these errors are dependent on the application targeted. For example, (independent of albedo) ULSMs used in numerical weather prediction applying ILC representation of the urban form will overestimate outgoing shortwave radiation from roofs due to the overestimation of sunlit fraction of the roofs. Complications of deriving height to width ratios from real world data are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modelling study is presented which investigates in-situ generated changes of the thermosphere and ionosphere during a solar eclipse. Neutral temperatures are expected to drop by up to 40 degrees K at 240 km height in the totality footprint, with neutral winds of up to 26 m/s responding to the change of pressure. Both temperatures and winds are found to respond with a time lag of 30 min after the passing of the Moon's shadow. A gravity wave is generated in the neutral atmosphere and propagates into the opposite hemisphere at around 300 m/s. The combined effects of thermal cooling and downwelling lead to an overall increase in [O], while [N(2)] initially rises and then for several hours after the eclipse is below the "steady state" level. An enhancement of [NmF2] is found and explained by the atmosphere's contraction during, and the reduced [O]/[N(2)] ratio after the eclipse.