944 resultados para Torsional Actuators
Resumo:
Networked control systems (NCSs) are distributed control system in which sensors, actuators and controllers are physically separated and connected through communication networks. NCS represent the evolution of networked control architectures providing greater modularity and control decentralization, ease maintenance and diagnosis and lower cost of implementation. A recent trend in this research topic is the development of NCS using wireless networks(WNCS)which enable interoperability between existing wiredand wireless systems. This paper presents the feasibility analysis of using serial to wireless converter as a wireless sensor link in NCS. In order to support this investigation, relevant performance metrics for wireless control applications such as jitter, time delay and messages lost are highlighted and calculated to evaluate the wireless converter capabilities. In addition the control performance of an implemented motor control system using the converter is analyzed. Experimental results led to the conclusion that serial ZigBee device isrecommended against the Bluetooth as it provided better metrics for control applications. However, bothdevices can be used to implement WNCS providing transmission rates and closed control loop times which are acceptable for NCS applications.Moreoverthe use of thewireless device delay in the PID controller discretization can improve the control performance of the system.
Resumo:
Networked control systems (NCSs) are distributed control systems in which the sensors, actuators, and controllers are physically separated and connected through an industrial network. The main challenge related to the development of NCSs is the degenerative effects caused by the inclusion of this communication network in the closed loop control. In order to mitigate these effects, co-simulation tools for NCS have been developed to study the network influence in the NCS. This paper presents a revision about co-simulation tools for NCS and the application of two of these tools for the design and evaluation of NCSs. The TrueTime and Jitterbug tools were used together to evaluate the main configuration parameter that affects the performance of CAN-based NCS and to verify the NCS quality of control under various timing conditions including different transmission period of messages and network delays. Therefore, the simulation results led to the conclusion that despite the transmission period of messages is the most significant factor among the analyzed in the design of NCS, its influence is related to the kind of system with greater effects in NCSs with fast dynamics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The torsional stiffness of chassis is one of the most important properties of a vehicle's structure and therefore its measurement is important. For the first time, the torsional stiffness was considered on the design of a prototype Baja SAE of the team from UNESP - FEG, Equipe Piratas do Vale Bardahl. According to the team's opinion, the increase of stiffness on this prototype, called MB1114, made possible a great improvement in its performance during competitions. In this work, the experimental evaluation of the torsional stiffness from this prototype is performed, detailing the analysis of results, as well as, the hysteresis' effect, least-squares regression and uncertainty analysis. It also shows that it is possible to measure the torsional stiffness of chassis with a low experimental uncertainty without expending many resources. The test rig costed R$ 32,50 due the reuse of materials and the use of instrumentation already available on campus. Furthermore, it is simple to produce and can be easily stocked. Those features are important for Baja and Formula SAE teams. Lastly, the measured value is used to validate the finite element analysis performed by the team during this prototype's design, because similar studies will be performed for the new cars. After investigating the finite element analysis, one result 13,5% higher than the measured value was reached. This difference is believed to be occurred due the imperfections of the finite element model, in other words, for not been possible to simulate every phenomena present on the real model
Resumo:
The elimination of all external incisions is an important step in reducing the invasiveness of surgical procedures. Natural Orifice Translumenal Endoscopic Surgery (NOTES) is an incision-less surgery and provides explicit benefits such as reducing patient trauma and shortening recovery time. However, technological difficulties impede the widespread utilization of the NOTES method. A novel robotic tool has been developed, which makes NOTES procedures feasible by using multiple interchangeable tool tips. The robotic tool has the capability of entering the body cavity through an orifice or a single incision using a flexible articulated positioning mechanism and once inserted is not constrained by incisions, allowing for visualization and manipulations throughout the cavity. Multiple interchangeable tool tips of the robotic device initially consist of three end effectors: a grasper, scissors, and an atraumatic Babcock clamp. The tool changer is capable of selecting and switching between the three tools depending on the surgical task using a miniature mechanism driven by micro-motors. The robotic tool is remotely controlled through a joystick and computer interface. In this thesis, the following aspects of this robotic tool will be detailed. The first-generation robot is designed as a conceptual model for implementing a novel mechanism of switching, advancing, and controlling the tool tips using two micro-motors. It is believed that this mechanism achieves a reduction in cumbersome instrument exchanges and can reduce overall procedure time and the risk of inadvertent tissue trauma during exchanges with a natural orifice approach. Also, placing actuators directly at the surgical site enables the robot to generate sufficient force to operate effectively. Mounting the multifunctional robot on the distal end of an articulating tube provides freedom from restriction on the robot kinematics and helps solve some of the difficulties otherwise faced during surgery using NOTES or related approaches. The second-generation multifunctional robot is then introduced in which the overall size is reduced and two arms provide 2 additional degrees of freedom, resulting in feasibility of insertion through the esophagus and increased dexterity. Improvements are necessary in future iterations of the multifunctional robot; however, the work presented is a proof of concept for NOTES robots capable of abdominal surgical interventions.
Resumo:
The torsional stiffness of chassis is one of the most important properties of a vehicle's structure and therefore its measurement is important. For the first time, the torsional stiffness was considered on the design of a prototype Baja SAE of the team from UNESP - FEG, Equipe Piratas do Vale Bardahl. According to the team's opinion, the increase of stiffness on this prototype, called MB1114, made possible a great improvement in its performance during competitions. In this work, the experimental evaluation of the torsional stiffness from this prototype is performed, detailing the analysis of results, as well as, the hysteresis' effect, least-squares regression and uncertainty analysis. It also shows that it is possible to measure the torsional stiffness of chassis with a low experimental uncertainty without expending many resources. The test rig costed R$ 32,50 due the reuse of materials and the use of instrumentation already available on campus. Furthermore, it is simple to produce and can be easily stocked. Those features are important for Baja and Formula SAE teams. Lastly, the measured value is used to validate the finite element analysis performed by the team during this prototype's design, because similar studies will be performed for the new cars. After investigating the finite element analysis, one result 13,5% higher than the measured value was reached. This difference is believed to be occurred due the imperfections of the finite element model, in other words, for not been possible to simulate every phenomena present on the real model
Resumo:
In this work, a method of computing PD stabilising gains for rotating systems is presented based on the D-decomposition technique, which requires the sole knowledge of frequency response functions. By applying this method to a rotating system with electromagnetic actuators, it is demonstrated that the stability boundary locus in the plane of feedback gains can be easily plotted, and the most suitable gains can be found to minimise the resonant peak of the system. Experimental results for a Laval rotor show the feasibility of not only controlling lateral shaft vibration and assuring stability, but also helps in predicting the final vibration level achieved by the closed-loop system. These results are obtained based solely on the input-output response information of the system as a whole.
Resumo:
The purpose of this study is to apply inverse dynamics control for a six degree of freedom flight simulator motion system. Imperfect compensation of the inverse dynamic control is intentionally introduced in order to simplify the implementation of this approach. The control strategy is applied in the outer loop of the inverse dynamic control to counteract the effects of imperfect compensation. The control strategy is designed using H-infinity theory. Forward and inverse kinematics and full dynamic model of a six degrees of freedom motion base driven by electromechanical actuators are briefly presented. Describing function, acceleration step response and some maneuvers computed from the washout filter were used to evaluate the performance of the controllers.
Resumo:
A semi-autonomous unmanned underwater vehicle (UUV), named LAURS, is being developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The vehicle has been designed to provide inspection and intervention capabilities in specific missions of deep water oil fields. In this work, a method of modeling and identification of yaw motion dynamic system model of an open-frame underwater vehicle is presented. Using an on-board low cost magnetic compass sensor the method is based on the utilization of an uncoupled 1-DOF (degree of freedom) dynamic system equation and the application of the integral method which is the classical least squares algorithm applied to the integral form of the dynamic system equations. Experimental trials with the actual vehicle have been performed in a test tank and diving pool. During these experiments, thrusters responsible for yaw motion are driven by sinusoidal voltage signal profiles. An assessment of the feasibility of the method reveals that estimated dynamic system models are more reliable when considering slow and small sinusoidal voltage signal profiles, i.e. with larger periods and with relatively small amplitude and offset.
Computational and experimental characterization of a low-cost piezoelectric valveless diaphragm pump
Resumo:
Flow pumps act as important devices in areas such as Bioengineering, Medicine, and Pharmacy, among other areas of Engineering, mainly for delivering liquids or gases at small-scale and precision flow rate quantities. Principles for pumping fluids based on piezoelectric actuators have been widely studied, since they allow the construction of pump systems for displacement of small fluid volumes with low power consumption. This work studies valveless piezoelectric diaphragm pumps for flow generation, which uses a piezoelectric ceramic (PZT) as actuator to move a membrane (diaphragm) up and down as a piston. The direction of the flow is guaranteed by valveless configuration based on a nozzle-diffuser system that privileges the flow in just one pumping direction. Most research efforts on development of valveless flow pump deal either with computational simulations based on simplified models or with simplified physical approaches based on analytical models. The main objective of this work is the study of a methodology to develop a low-cost valveless piezoelectric diaphragm flow pump using computational simulations, parametric study, prototype manufacturing, and experimental characterization. The parametric study has shown that the eccentricity of PZT layer and metal layer plays a key role in the performance of the pump.
Resumo:
The aim of this study is to develop a new enzymeless electroanalytical method for the indirect quantification of creatinine from urine sample. This method is based on the electrochemical monitoring of picrate anion reduction at a glassy carbon electrode in an alkaline medium before and after it has reacted with creatinine (Jaffe's reaction). By using the differential pulse voltammetry technique under the optimum experimental conditions (step potential, amplitude potential, reaction time, and temperature), a linear analytical curve was obtained for concentrations of creatinine ranging from 1 to 80 mu mol L-1, with a detection limit of 380 nmol L-1. This proposed method was used to measure creatinine in human urine without the interference of most common organic species normally present in biological fluids (e.g., uric acid, ascorbic acid, glucose, and phosphocreatinine). The results obtained using urine samples were highly similar to the results obtained using the reference spectrophotometric method (at a 95% confidence level). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
2-Methylisoborneol (MIB) and geosmin (GSM) are sub products from algae decomposition and, depending on their concentration, can be toxic: otherwise, they give unpleasant taste and odor to water. For water treatment companies it is important to constantly monitor their presence in the distributed water and avoid further costumer complaints. Lower-cost and easy-to-read instrumentation would be very promising in this regard. In this study, we evaluate the potentiality of an electronic tongue (ET) system based on non-specific polymeric sensors and impedance measurements in monitoring MIB and GSM in water samples. Principal component analysis (PCA) applied to the generated data matrix indicated that this ET was capable to perform with remarkable reproducibility the discrimination of these two contaminants in either distilled or tap water, in concentrations as low as 25 ng L-1. Nonetheless, this analysis methodology was rather qualitative and laborious, and the outputs it provided were greatly subjective. Also, data analysis based on PCA severely restricts automation of the measuring system or its use by non-specialized operators. To circumvent these drawbacks, a fuzzy controller was designed to quantitatively perform sample classification while providing outputs in simpler data charts. For instance, the ET along with the referred fuzzy controller performed with a 100% hit rate the quantification of MIB and GSM samples in distilled and tap water. The hit rate could be read directly from the plot. The lower cost of these polymeric sensors allied to the especial features of the fuzzy controller (easiness on programming and numerical outputs) provided initial requirements for developing an automated ET system to monitor odorant species in water production and distribution. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The layer-by-layer (LbL) technique combined with field-effect transistor (FET) based sensors has enabled the production of pH-sensitive platforms with potential application in biosensors. A variation of the FET architecture, so called separative extended gate FET (SEGFET) devices, are promise as an alternative to conventional ion sensitive FET (ISFET). SEGFET configuration exhibits the advantage of combining the field-effect concept with organic and inorganic materials directly adsorbed on the extended gate, allowing the test of new pH-sensitive materials in a simple and low cost way. In this communication, poly(propylene imine) dendrimer (PPI) and TiO2 nanoparticles (TiO2-np) were assembled onto gold-covered substrates via layer-by-layer technique to produce a low cost SEGFET pH sensor. The sensor presented good pH sensitivity, ca. 57 mV pH(-1), showing that our strategy has potential advantages to fabricate low cost pH-sensing membranes. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A nonlinear analysis is performed for the purpose of identification of the pitch freeplay nonlinearity and its effect on the type of bifurcation of a two degree-of-freedom aeroelastic system. The databases for the identification are generated from experimental investigations of a pitch-plunge rigid airfoil supported by a nonlinear torsional spring. Experimental data and linear analysis are performed to validate the parameters of the linearized equations. Based on the periodic responses of the experimental data which included the flutter frequency and its third harmonics, the freeplay nonlinearity is approximated by a polynomial expansion up to the third order. This representation allows us to use the normal form of the Hopf bifurcation to characterize the type of instability. Based on numerical integrations, the coefficients of the polynomial expansion representing the freeplay nonlinearity are identified. Published by Elsevier Ltd.
Resumo:
In this paper we discuss the detection of glucose and triglycerides using information visualization methods to process impedance spectroscopy data. The sensing units contained either lipase or glucose oxidase immobilized in layer-by-layer (LbL) films deposited onto interdigitated electrodes. The optimization consisted in identifying which part of the electrical response and combination of sensing units yielded the best distinguishing ability. It is shown that complete separation can be obtained for a range of concentrations of glucose and triglyceride when the interactive document map (IDMAP) technique is used to project the data into a two-dimensional plot. Most importantly, the optimization procedure can be extended to other types of biosensors, thus increasing the versatility of analysis provided by tailored molecular architectures exploited with various detection principles. (C) 2012 Elsevier B.V. All rights reserved.