978 resultados para Tooth enamel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported single crowns (SCs) and to describe the incidence of biological, technical and esthetic complications. METHODS Medline (PubMed), Embase, Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported fixed dental prostheses (FDPs) with a mean follow-up of at least 3 years. This was complimented by an additional hand search and the inclusion of 34 studies from a previous systematic review [1,2]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. RESULTS Sixty-seven studies reporting on 4663 metal-ceramic and 9434 all-ceramic SCs fulfilled the inclusion criteria. Seventeen studies reported on metal-ceramic crowns, and 54 studies reported on all-ceramic crowns. Meta-analysis of the included studies indicated an estimated survival rate of metal-ceramic SCs of 94.7% (95% CI: 94.1-96.9%) after 5 years. This was similar to the estimated 5-year survival rate of leucit or lithium-disilicate reinforced glass ceramic SCs (96.6%; 95% CI: 94.9-96.7%), of glass infiltrated alumina SCs (94.6%; 95% CI: 92.7-96%) and densely sintered alumina and zirconia SCs (96%; 95% CI: 93.8-97.5%; 92.1%; 95% CI: 82.8-95.6%). In contrast, the 5-year survival rates of feldspathic/silica-based ceramic crowns were lower (p<0.001). When the outcomes in anterior and posterior regions were compared feldspathic/silica-based ceramic and zirconia crowns exhibited significantly lower survival rates in the posterior region (p<0.0001), the other crown types performed similarly. Densely sintered zirconia SCs were more frequently lost due to veneering ceramic fractures than metal-ceramic SCs (p<0.001), and had significantly more loss of retention (p<0.001). In total higher 5 year rates of framework fracture were reported for the all-ceramic SCs than for metal-ceramic SCs. CONCLUSIONS Survival rates of most types of all-ceramic SCs were similar to those reported for metal-ceramic SCs, both in anterior and posterior regions. Weaker feldspathic/silica-based ceramics should be limited to applications in the anterior region. Zirconia-based SCs should not be considered as primary option due to their high incidence of technical problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported fixed dental prostheses (FDPs) and to describe the incidence of biological, technical and esthetic complications. METHODS Medline (PubMed), Embase and Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported FDPs with a mean follow-up of at least 3 years. This was complemented by an additional hand search and the inclusion of 10 studies from a previous systematic review [1]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. RESULTS Forty studies reporting on 1796 metal-ceramic and 1110 all-ceramic FDPs fulfilled the inclusion criteria. Meta-analysis of the included studies indicated an estimated 5-year survival rate of metal-ceramic FDPs of 94.4% (95% CI: 91.2-96.5%). The estimated survival rate of reinforced glass ceramic FDPs was 89.1% (95% CI: 80.4-94.0%), the survival rate of glass-infiltrated alumina FDPs was 86.2% (95% CI: 69.3-94.2%) and the survival rate of densely sintered zirconia FDPs was 90.4% (95% CI: 84.8-94.0%) in 5 years of function. Even though the survival rate of all-ceramic FDPs was lower than for metal-ceramic FDPs, the differences did not reach statistical significance except for the glass-infiltrated alumina FDPs (p=0.05). A significantly higher incidence of caries in abutment teeth was observed for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Significantly more framework fractures were reported for reinforced glass ceramic FDPs (8.0%) and glass-infiltrated alumina FDPs (12.9%) compared to metal-ceramic FDPs (0.6%) and densely sintered zirconia FDPs (1.9%) in 5 years in function. However, the incidence of ceramic fractures and loss of retention was significantly (p=0.018 and 0.028 respectively) higher for densely sintered zirconia FDPs compared to all other types of FDPs. CONCLUSIONS Survival rates of all types of all-ceramic FDPs were lower than those reported for metal-ceramic FDPs. The incidence of framework fractures was significantly higher for reinforced glass ceramic FDPs and infiltrated glass ceramic FDPs, and the incidence for ceramic fractures and loss of retention was significantly higher for densely sintered zirconia FDPs compared to metal-ceramic FDPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aims of this study were (1) to assess the amount of fluoride (F) released from varnishes containing calcium glycerophosphate (CaGP) and (2) to assess the effect of the experimental varnishes on in vitro demineralization. Six test groups using 5 varnishes: base varnish (no active ingredients); Duraphat® (2.26% NaF); Duofluorid® (5.63% NaF/CaF2); experimental varnish 1 (1% CaGP/5.63% NaF/CaF2); experimental varnish 2 (5% CaGP/5.63% NaF/CaF2); and no varnish were set up. In stage 1, 60 acrylic blocks were randomly distributed into 6 groups (n = 10). Then 300 µg of each varnish was applied to each block. The blocks were immersed in deionized water, which was changed after 1, 8, 12, 24, 48 and 72 hours. Fluoride concentration in the water was analyzed using a fluoride electrode. In stage 2, 60 bovine enamel samples were distributed into 6 groups (n = 10), and treated with 300 µg of the respective varnish. After 6 h the varnish was removed and the samples were subjected to a 7-day in vitro pH cycle (6 h demineralization/18 h remineralization per day). The demineralization was measured using surface hardness. The results showed that both experimental varnishes released more fluoride than Duofluorid® and Duraphat® (p < 0.05), but Duraphat® showed the best preventive effect by decreasing enamel hardness loss (p < 0.05). Therefore, we conclude that even though (1) the experimental varnishes containing CaGP released greater amounts of F, (2) they did not increase in the preventive effect against enamel demineralization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Due to an increased focus on erosive tooth wear (ETW), the European Federation of Conservative Dentistry (EFCD) considered ETW as a relevant topic for generating this consensus report. MATERIALS AND METHODS This report is based on a compilation of the scientific literature, an expert conference, and the approval by the General Assembly of EFCD. RESULTS ETW is a chemical-mechanical process resulting in a cumulative loss of hard dental tissue not caused by bacteria, and it is characterized by loss of the natural surface morphology and contour of the teeth. A suitable index for classification of ETW is the basic erosive wear examination (BEWE). Regarding the etiology, patient-related factors include the pre-disposition to erosion, reflux, vomiting, drinking and eating habits, as well as medications and dietary supplements. Nutritional factors relate to the composition of foods and beverages, e.g., with low pH and high buffer capacity (major risk factors), and calcium concentration (major protective factor). Occupational factors are exposition of workers to acidic liquids or vapors. Preventive management of ETW aims at reducing or stopping the progression of the lesions. Restorative management aims at reducing symptoms of pain and dentine hypersensitivity, or to restore esthetic and function, but it should only be used in conjunction with preventive strategies. CONCLUSIONS Effective management of ETW includes screening for early signs of ETW and evaluating all etiological factors. CLINICAL RELEVANCE ETW is a clinical condition, which calls for the increased attention of the dental community and is a challenge for the cooperation with other medical specialities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effectiveness of fluoride in caries prevention has been convincingly proven. In recent years, researchers have investigated the preventive effects of different fluoride formulations on erosive tooth wear with positive results, but their action on caries and erosion prevention must be based on different requirements, because there is no sheltered area in the erosive process as there is in the subsurface carious lesions. Thus, any protective mechanism from fluoride concerning erosion is limited to the surface or the near surface layer of enamel. However, reports on other protective agents show superior preventive results. The mechanism of action of tin-containing products is related to tin deposition onto the tooth surface, as well as the incorporation of tin into the near-surface layer of enamel. These tin-rich deposits are less susceptible to dissolution and may result in enhanced protection of the underlying tooth. Titanium tetrafluoride forms a protective layer on the tooth surface. It is believed that this layer is made up of hydrated hydrogen titanium phosphate. Products containing phosphates and/or proteins may adsorb either to the pellicle, rendering it more protective against demineralization, or directly to the dental hard tissue, probably competing with H(+) at specific sites on the tooth surface. Other substances may further enhance precipitation of calcium phosphates on the enamel surface, protecting it from additional acid impacts. Hence, the future of fluoride alone in erosion prevention looks grim, but the combination of fluoride with protective agents, such as polyvalent metal ions and some polymers, has much brighter prospects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Calcium glycerophosphate (CaGP) was added to fluoride varnishes to analyze their preventive effect on initial enamel erosion and fluoride uptake: potassium hydroxide (KOH)-soluble and KOH-insoluble fluoride bound to enamel. MATERIALS AND METHODS This study was carried out in two parts. Part 1: 108 enamel samples were randomly distributed into six varnish groups: base varnish (no active ingredients); Duraphat® (2.26 %NaF); Duofluorid® (5.63 %NaF/CaF2); experimental varnish 1 (1 %CaGP/5.63 %NaF/CaF2); experimental varnish 2 (5 %CaGP/5.63 %NaF/CaF2); and no varnish. Cyclic demineralization (90 s; citric acid, pH = 3.6) and remineralization (4 h) was made once a day, for 3 days. Change in surface microhardness (SMH) was measured. Part 2: 60 enamel samples were cut in half and received no varnish (control) or a layer of varnish: Duraphat®, Duofluorid®, experimental varnishes 1 and 2. Then, KOH-soluble and KOH-insoluble fluoride were analyzed using an electrode. RESULTS After cyclic demineralization, SMH decreased in all samples, but Duraphat® caused less hardness loss. No difference was observed between varnishes containing CaGP and the other varnishes. Similar amounts of KOH-soluble and insoluble fluoride was found in experimental varnish 1 and Duofluorid®, while lower values were found for experimental varnish 2 and Duraphat®. CONCLUSION The addition of CaGP to fluoride varnishes did not increase fluoride bound to enamel and did not enhance their protection against initial enamel erosion. CLINICAL RELEVANCE We observe that the fluoride varnishes containing CaGP do not promote greater amounts of fluoride bound to enamel and that fluoride bound to enamel may not be closely related to erosion prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE This study evaluated the differences in enamel color change, surface hardness, elastic modulus, and surface roughness between treatments with four bleaching gels containing carbamide peroxide (two at 10% and one each at 35%, and 45%) and two bleaching gels containing hydrogen peroxide (two at 40%). METHODS Enamel specimens were bleached and color changes were measured. Color change was calculated using either ΔE or the Bleaching Index (BI). Then, surface hardness, elastic modulus, and surface roughness of the enamel specimens were evaluated. All measurements were performed at baseline and directly after the first bleaching treatment for all carbamide peroxide- and hydrogen peroxide-containing bleaching gels. In addition, final measurements were made 24 hours after each of a total of 10 bleaching treatments for carbamide peroxide bleaching gels, and 1 week after each of a total of three bleaching treatments for hydrogen peroxide bleaching gels. RESULTS After the last bleaching treatment, respective ΔE scores were 17.6 and 8.2 for the two 10% carbamide peroxide gels, 12.9 and 5.6 for the 45% and 35% carbamide peroxide gels, and 9.6 and 13.9 for the two 40% hydrogen peroxide gels. The respective BI scores were -2.0 and -2.0 for the two 10% carbamide peroxide gels, -3.5 and -1.5 for the 45% and 35% carbamide peroxide gels, and -2.0 and -3.0 for the two 40% hydrogen peroxide gels. Each bleaching gel treatment resulted in significant whitening; however, no significant difference was found among the gels after the last bleaching. Whitening occurred within the first bleaching treatments and did not increase significantly during the remaining treatments. Surface hardness significantly decreased after the last bleaching treatment, when 10% carbamide peroxide was used. Furthermore, significant changes in the elastic modulus or surface roughness occurred only after treatment with 10% carbamide peroxide. CONCLUSION All six bleaching gels effectively bleached the enamel specimens independent of their concentration of peroxide. Gels with low peroxide concentration and longer contact time negatively affected the enamel surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Although regenerative treatment options are available, periodontal regeneration is still regarded as insufficient and unpredictable. AIM This review article provides scientific background information on the animated 3D film Cell-to-Cell Communication - Periodontal Regeneration. RESULTS Periodontal regeneration is understood as a recapitulation of embryonic mechanisms. Therefore, a thorough understanding of cellular and molecular mechanisms regulating normal tooth root development is imperative to improve existing and develop new periodontal regenerative therapies. However, compared to tooth crown and earlier stages of tooth development, much less is known about the development of the tooth root. The formation of root cementum is considered the critical element in periodontal regeneration. Therefore, much research in recent years has focused on the origin and differentiation of cementoblasts. Evidence is accumulating that the Hertwig's epithelial root sheath (HERS) has a pivotal role in root formation and cementogenesis. Traditionally, ectomesenchymal cells in the dental follicle were thought to differentiate into cementoblasts. According to an alternative theory, however, cementoblasts originate from the HERS. What happens when the periodontal attachment system is traumatically compromised? Minor mechanical insults to the periodontium may spontaneously heal, and the tissues can structurally and functionally be restored. But what happens to the periodontium in case of periodontitis, an infectious disease, after periodontal treatment? A non-regenerative treatment of periodontitis normally results in periodontal repair (i.e., the formation of a long junctional epithelium) rather than regeneration. Thus, a regenerative treatment is indicated to restore the original architecture and function of the periodontium. Guided tissue regeneration or enamel matrix proteins are such regenerative therapies, but further improvement is required. As remnants of HERS persist as epithelial cell rests of Malassez in the periodontal ligament, these epithelial cells are regarded as a stem cell niche that can give rise to new cementoblasts. Enamel matrix proteins and members of the transforming growth factor beta (TGF-ß) superfamily have been implicated in cementoblast differentiation. CONCLUSION A better knowledge of cell-to-cell communication leading to cementoblast differentiation may be used to develop improved regenerative therapies to reconstitute periodontal tissues that were lost due to periodontitis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The use of an enamel matrix derivative (EMD) has been shown to enhance periodontal regeneration (e.g., formation of root cementum, periodontal ligament, and alveolar bone). However, in certain clinical situations, the use of EMD alone may not be sufficient to prevent flap collapse or provide sufficient stability of the blood clot. Data from clinical and preclinical studies have demonstrated controversial results after application of EMD combined with different types of bone grafting materials in periodontal regenerative procedures. The aim of the present study is to investigate the adsorption properties of enamel matrix proteins to bone grafts after surface coating with either EMD (as a liquid formulation) or EMD (as a gel formulation). METHODS Three different types of grafting materials, including a natural bone mineral (NBM), demineralized freeze-dried bone allograft (DFDBA), or a calcium phosphate (CaP), were coated with either EMD liquid or EMD gel. Samples were analyzed by scanning electron microscopy or transmission electron microscopy (TEM) using an immunostaining assay with gold-conjugated anti-EMD antibody. Total protein adsorption to bone grafting material was quantified using an enzyme-linked immunosorbent assay (ELISA) kit for amelogenin. RESULTS The adsorption of amelogenin to the surface of grafting material varied substantially based on the carrier system used. EMD gel adsorbed less protein to the surface of grafting particles, which easily dissociated from the graft surface after phosphate-buffered saline rinsing. Analyses by TEM revealed that adsorption of amelogenin proteins were significantly farther from the grafting material surface, likely a result of the thick polyglycolic acid gel carrier. ELISA protein quantification assay demonstrated that the combination of EMD liquid + NBM and EMD liquid + DFDBA adsorbed higher amounts of amelogenin than all other treatment modalities. Furthermore, amelogenin proteins delivered by EMD liquid were able to penetrate the porous surface structure of NBM and DFDBA and adsorb to the interior of bone grafting particles. Grafting materials coated with EMD gel adsorbed more frequently to the exterior of grafting particles with little interior penetration. CONCLUSIONS The present study demonstrates a large variability of adsorbed amelogenin to the surface of bone grafting materials when enamel matrix proteins were delivered in either a liquid formulation or gel carrier. Furthermore, differences in amelogenin adsorption were observed among NBM, DFDBA, and biphasic CaP particles. Thus, the potential for a liquid carrier system for EMD, used to coat EMD, may be advantageous for better surface coating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM To assess the pro-angiogenic and pro-inflammatory capacity of the dentine-pulp complex in response to the prolyl hydroxylase inhibitor L-mimosine in a tooth slice organ culture model. METHODOLOGY Human teeth were sectioned transversely into 600-μm-thick slices and cultured in medium supplemented with serum and antibiotics. Then, pulps were stimulated for 48 h with L-mimosine. Pulps were subjected to viability measurements based on formazan formation in MTT assays. In addition, histological evaluation of pulps was performed based on haematoxylin and eosin staining. Culture supernatants were subjected to immunoassays for vascular endothelial growth factor (VEGF) to determine the pro-angiogenic capacity and to immunoassays for interleukin (IL)-6 and IL-8 to assess the pro-inflammatory response. Interleukin-1 served as pro-inflammatory control. Echinomycin was used to inhibit hypoxia-inducible factor-1 (HIF-1) alpha activity. Data were analysed using Student's t-test and Mann-Whitney U test. RESULTS Pulps within tooth slices remained vital upon L-mimosine stimulation as indicated by formazan formation and histological evaluation. L-mimosine increased VEGF production when normalized to formazan formation in the pulp tissue of the tooth slices (P < 0.05). This effect on VEGF was reduced by echinomycin (P < 0.01). Changes in normalized IL-6 and IL-8 levels upon treatment with L-mimosine did not reach the level of significance (P > 0.05), whilst treatment with IL-1, which served as positive control, increased IL-6 (P < 0.05) and IL-8 levels (P < 0.05). CONCLUSIONS The prolyl hydroxylase inhibitor L-mimosine increased VEGF production via HIF-1 alpha in the tooth slice organ culture model whilst inducing no prominent increase in IL-6 and IL-8. Pre-clinical studies will reveal if these in vitro effects translate into dental pulp regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infant burials in Roman settlements are a common observation. Even though ancient authors provide information many questions remain uncertain. For instance, the burial ritual for stillbirth and infanticide neonates is not specifically mentioned. This study therefore aimed to investigate the application of stable nitrogen (δ15N) and carbon (δ13C) isotopes from neonatal bone collagen in differentiating between a breastfeeding signal and stillbirth or a short survival of less than ten days. For this purpose collagen of 11 human and 14 non-human bones from the Roman settlement Petinesca (1st - 3rd century AD, Switzerland) was extracted and analysed for δ15N and δ13C. Tooth histology was performed for the central incisor and canine of the right mandible in order to investigate the presence of a neonatal line. According to the length of the long bones the age varied between 8.5 lunar months to 2 months ex utero. The stable isotope results provided a breastfeeding signal for all except one individual where the breastfeeding signal was absent. The tooth histological analysis of this individual exhibited no neonatal line. It is concluded that stable isotope analysis could indicate stillbirth or a short survival after birth. The tooth histology confirmed the stable isotope results. Furthermore, this might indicate that the burial ritual did not differentiate between stillbirth and neonates, who died within the time span stated by ancient authors of up to 40 days of age or the appearance of teeth. However, for further justifications additional research is going to be conducted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES Bone replacement grafting materials play an important role in regenerative dentistry. Despite a large array of tested bone-grafting materials, little information is available comparing the effects of bone graft density on in vitro cell behavior. Therefore, the aim of the present study is to compare the effects of cells seeded on bone grafts at low and high density in vitro for osteoblast adhesion, proliferation, and differentiation. MATERIALS AND METHODS The response of osteoblasts to the presence of a growth factor (enamel matrix derivative, (EMD)) in combination with low (8 mg per well) or high (100 mg per well) bone grafts (BG; natural bone mineral, Bio-Oss®) density, was studied and compared for osteoblast cell adhesion, proliferation, and differentiation as assessed by real-time PCR. Standard tissue culture plastic was used as a control with and without EMD. RESULTS The present study demonstrates that in vitro testing of bone-grafting materials is largely influenced by bone graft seeding density. Osteoblast adhesion was up to 50 % lower when cells were seeded on high-density BG when compared to low-density BG and control tissue culture plastic. Furthermore, proliferation was affected in a similar manner whereby cell proliferation on high-density BG (100 mg/well) was significantly increased when compared to that on low-density BG (8 mg/well). In contrast, cell differentiation was significantly increased on high-density BG as assessed by real-time PCR for markers collagen 1 (Col 1), alkaline phosphatase (ALP), and osteocalcin (OC) as well as alizarin red staining. The effects of EMD on osteoblast adhesion, proliferation, and differentiation further demonstrated that the bone graft seeding density largely controls in vitro results. EMD significantly increased cell attachment only on high-density BG, whereas EMD was able to further stimulate cell proliferation and differentiation of osteoblasts on control culture plastic and low-density BG when compared to high-density BG. CONCLUSION The results from the present study demonstrate that the in vitro conditions largely influence cell behavior of osteoblasts seeded on bone grafts and in vitro testing. CLINICAL RELEVANCE These results also illustrate the necessity for careful selection of bone graft seeding density to optimize in vitro testing and provide the clinician with a more accurate description of the osteopromotive potential of bone grafts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The aim of the present systematic review and meta-analysis was to assess the clinical efficacy of regenerative periodontal surgery of intrabony defects using a combination of enamel matrix derivative (EMD) and bone graft compared with that of EMD alone. MATERIALS AND METHODS The Cochrane Oral Health Group specialist trials, MEDLINE, and EMBASE databases were searched for entries up to February 2014. The primary outcome was gain of clinical attachment (CAL). Weighted means and forest plots were calculated for CAL gain, probing depth (PD), and gingival recession (REC). RESULTS Twelve studies reporting on 434 patients and 548 intrabony defects were selected for the analysis. Mean CAL gain amounted to 3.76 ± 1.07 mm (median 3.63 95 % CI 3.51-3.75) following treatment with a combination of EMD and bone graft and to 3.32 ± 1.04 mm (median 3.40; 95 % CI 3.28-3.52) following treatment with EMD alone. Mean PD reduction measured 4.22 ± 1.20 mm (median 4.10; 95 % CI 3.96-4.24) at sites treated with EMD and bone graft and yielded 4.12 ± 1.07 mm (median 4.00; 95 % CI 3.88-4.12) at sites treated with EMD alone. Mean REC increase amounted to 0.76 ± 0.42 mm (median 0.63; 95 % CI 0.58-0.68) at sites treated with EMD and bone graft and to 0.91 ± 0.26 mm (median 0.90; 95 % CI 0.87-0.93) at sites treated with EMD alone. CONCLUSIONS Within their limits, the present results indicate that the combination of EMD and bone grafts may result in additional clinical improvements in terms of CAL gain and PD reduction compared with those obtained with EMD alone. The potential influence of the chosen graft material or of the surgical procedure (i.e., flap design) on the clinical outcomes is unclear. CLINICAL RELEVANCE The present findings support the use of EMD and bone grafts for the treatment of intrabony periodontal defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intrabony periodontal defects are a frequent complication of periodontitis and, if left untreated, may negatively affect long-term tooth prognosis. The optimal outcome of treatment in intrabony defects is considered to be the absence of bleeding on probing, the presence of shallow pockets associated with periodontal regeneration (i.e. formation of new root cementum with functionally orientated inserting periodontal ligament fibers connected to new alveolar bone) and no soft-tissue recession. A plethora of different surgical techniques, often including implantation of various types of bone graft and/or bone substitutes, root surface demineralization, guided tissue regeneration, growth and differentiation factors, enamel matrix proteins or various combinations thereof, have been employed to achieve periodontal regeneration. Despite positive observations in animal models and successful outcomes reported for many of the available regenerative techniques and materials in patients, including histologic reports, robust information on the degree to which reported clinical improvements reflect true periodontal regeneration does not exist. Thus, the aim of this review was to summarize, in a systematic manner, the available histologic evidence on the effect of reconstructive periodontal surgery using various types of biomaterials to enhance periodontal wound healing/regeneration in human intrabony defects. In addition, the inherent problems associated with performing human histologic studies and in interpreting the results, as well as certain ethical considerations, are discussed. The results of the present systematic review indicate that periodontal regeneration in human intrabony defects can be achieved to a variable extent using a range of methods and materials. Periodontal regeneration has been observed following the use of a variety of bone grafts and substitutes, guided tissue regeneration, biological factors and combinations thereof. Combination approaches appear to provide the best outcomes, whilst implantation of alloplastic material alone demonstrated limited, to no, periodontal regeneration.