984 resultados para Tomografie elettriche Conducibilità idraulica Plume
Resumo:
We investigate changes in the delivery and oceanic transport of Amazon sediments related to terrestrial climate variations over the last 250 ka. We present high-resolution geochemical records from four marine sediment cores located between 5 and 12° N along the northern South American margin. The Amazon River is the sole source of terrigenous material for sites at 5 and 9° N, while the core at 12° N receives a mixture of Amazon and Orinoco detrital particles. Using an endmember unmixing model, we estimated the relative proportions of Amazon Andean material ("%-Andes", at 5 and 9° N) and of Amazon material ("%-Amazon", at 12° N) within the terrigenous fraction. The %-Andes and %-Amazon records exhibit significant precessional variations over the last 250 ka that are more pronounced during interglacials in comparison to glacial periods. High %-Andes values observed during periods of high austral summer insolation reflect the increased delivery of suspended sediments by Andean tributaries and enhanced Amazonian precipitation, in agreement with western Amazonian speleothem records. Increased Amazonian rainfall reflects the intensification of the South American monsoon in response to enhanced land-ocean thermal gradient and moisture convergence. However, low %-Amazon values obtained at 12° N during the same periods seem to contradict the increased delivery of Amazon sediments. We propose that reorganizations in surface ocean currents modulate the northwestward transport of Amazon material. In agreement with published records, the seasonal North Brazil Current retroflection is intensified (or prolonged in duration) during cold substages of the last 250 ka (which correspond to intervals of high DJF or low JJA insolation) and deflects eastward the Amazon sediment and freshwater plume.
Resumo:
A geochemical investigation was carried out on two sediment cores collected at 2 and 5 km from the Rainbow hydrothermal vent site. Bulk sediment compositions indicate that these cores record clear enrichments in Fe, Cu, Mn, V, P and As from hydrothermal plume fallout (Cave et al., 2002, doi:10.1016/S0016-7037(02)00823-2). Sequential dissolution of the bulk sediments has been used to discriminate between a leach (biogenic and oxy-hydroxide) component and a residual phase (detrital and sulphide/sulphate fractions). Major element data (Al, Fe, Ti, Mn, Mg, Ca, Si and index%) reveal that the hydrothermal input, as recorded in the leach phase, is much stronger than apparent from bulk sediment analyses alone. REE patterns for the leach phase record contributions from both biogenic carbonate (mimicking seawater REE patterns) and hydrothermal oxy-hydroxides, with the latter exhibiting positive Eu anomalies (hydrothermal derived) and negative Ce anomalies (seawater derived). Based on major element and REE data, the residue contains contributions from aeolian dust input, local MORB material and a hydrothermal component. Ternary REE mixing calculations indicate that most of the REE within the residual fraction (~80%) is derived from hydrothermal material, while detrital contributions to the REE budget, as deep-sea clay and volcanic debris, are <20%. By combining bulk and REE data for the various end-member components of the residue, we calculate that the chemical composition of the residue hydrothermal end-member is high in Ca (6-15%) and with a Nd/Sr ratio of 0.004. These characteristics indicate the presence of low-solubility hydrothermal sulphate (rather than sulphide) material within the residue component of Rainbow hydrothermal sediments.
Resumo:
Cretaceous basalts recovered during Ocean Drilling Program Leg 183 at Site 1137 on the Kerguelen Plateau show remarkable geochemical similarities to Cretaceous continental tholeiites located on the continental margins of eastern India (Rajmahal Traps) and southwestern Australia (Bunbury basalt). Major and trace element and Sr-Nd-Pb isotopic compositions of the Site 1137 basalts are consistent with assimilation of Gondwanan continental crust (from 5 to 7%) by Kerguelen plume-derived magmas. In light of the requirement for crustal contamination of the Kerguelen Plateau basalts, we re-examine the early tectonic environment of the initial Kerguelen plume head. Although a causal role of the Kerguelen plume in the breakup of Eastern Gondwana cannot be ascertained, we demonstrate the need for the presence of the Kerguelen plume early during continental rifting. Activity resulting from interactions by the newly formed Indian and Australian continental margins and the Kerguelen plume may have resulted in stranded fragments of continental crust, isolated at shallow levels in the Indian Ocean lithosphere.
Resumo:
Magmatic rocks of the Shatsky Rise form two groups replacing one another in time. The earlier ferrotholeiites enriched in potassium compose large massifs. Trachybasalts form seamounts and neotectonic ridges. Composition of volcanites indicates that two sources of magmatism took part in their formation: a depleted source characteristic of basalts of mid-ocean ridges and a ''plume'' source participating in formation of oceanic plateaus.
Resumo:
Results of geochemical studies of suspended matter from the water mass over the hydrothermal field at 9°50'N on the East Pacific Rise are reported. The suspended matter was sampled in background waters, in the buoyant plume, and in the near-bottom waters. Contents of Si, Al, P, Corg, Fe, Mn, Cu, Zn, Ni, Co, As, Cr, Cd, Pb, Ag, and Hg were determined. No definite correlations were found between the elements in the background waters. Many of the chemical elements correlated with Fe and associated with its oxyhydroxides in the buoyant plume. In the near-bottom waters trace elements are associated with Fe, Zn, and Cu (probably, with their sulfides formed during mixing of hydrothermal fluids with seawater). Chemical composition of sediment matter precipitated in a sediment trap was similar to the near-bottom suspended matter.
Resumo:
The "Ko'olau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapu'u section of Ko'olau Volcano. The 679 m-deep Ko'olau Scientific Drilling Project (KSDP) allows the long-term evolution of Ko'olau Volcano to be reconstructed and the longevity of the "Ko'olau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ~2.8 m.y.), and from ~110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawai'i. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/204Pb-206Pb/204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapu'u" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapu'u" component upsection. Thus, the "Makapu'u" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapu'u and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise MORB and ODP Site 843 datasets are clearly distinct, implying that no simple genetic relationship exists between the HV and the Pacific lithosphere. This observation provides strong evidence against generation of HV as melts derived from the Pacific lithosphere, whether this be recent or old (100 Ma). The depleted component present in the HV is unlike any MORB-type mantle and most likely represents material thermally entrained by the upwelling Hawaiian plume and sampled only during the rejuvenated stage. The "Kalihi" component is predominant in the main shield building stage lavas but is also present in the rejuvenated HV. Thus this material is sampled throughout the evolution of the volcano as it moves from the center (main shield-building stage) to the periphery (rejuvenated stage) of the plume. The presence of a plume-derived material in the rejuvenated stage has significant implications for Hawaiian mantle plume melting models.