863 resultados para Titanium metallurgy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research described in this thesis explored the synthesis tlnd characteristltion of biocompatible and biodegradable polymers of lactide through non-toxic titanium alkoxide nitiators. The research objectives focused on the preparation of polylactides in both solvent and solventless media, to produce materials with a wide range of molecular weights. The polylactides were fully characterised using gel permeation chromatography and 1H and 13C NMR spectroscopy. NMR spectroscopy was carried out in the study the reaction mechanisms. Kinetic studies of the ring opening polymerisation of lactide with titanium alkoxide initiators were also conducted using NMR spectroscopy. The objectives of this research were also focused on the enhancement of the flexibility of the polymer chains by synthesising random and block copolymers of lactide and ε-caprolactone using Ti(0-i-Pr)4 as an initiator, This work involved extensive characterisalion of the synthesised copolymers using gel permeation chromatography and 1H and 13C NMR spectroscopic analysis. Kinetic studies of the ring opening polymerisation of ε-caplrolactone and of the copolymerisation of lactide and ε-caprolactone with Ti(O-i-Pr)4 as an initiator were also carried out. The last section of this work involved the synthesis of block and star-shaped copolymers of lactide and poly(ethylene glycol) [PEG]. The preparation of lactide/PEG block copolymers was carried out by ring opening polymerisation of L-Iactide using Ti(O-i-Pr)4 as an initiator and hydroxyl-terminated PEG's with different numbers of hydroxyl groups as co-initiators both in solution and solventless media. These all-in-one polymersations yielded the synthesis of both lactide homopolymer and lactide/PEG block copolymer. In order to selectively synthesise copolymers of lactide and PEG, the experiment was carried out in two steps. The first step consisted of the synthesis of a titanium macro-initiator by exchanging the iso-propoxide ligands by PEG with different numbers of hydroxyl groups. The second step involved the ring opening polymerisation of lactide using the titanium macrocatalyst that was prepared as an initiator. The polymerisations were carried out in a solventless media. The synthesis of lactide/PEG copolymers using polyethylene glycol with amino terminal groups was also discussed. Extensive characterisation of the lactide block copolymers and macroinitiators was carried out using techniques such as, gel permeation chromatography (GPC), NMR spectroscopy and differential scanning calorimeter (DeS).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This investigation has been concerned with the behaviour of solid internal lubricant during mixing, compaction, ejection, dewaxing and sintering of iron powder compacts. Zinc stearate (0.01%-4.0%) was added to irregular iron powder by admixing or precipitation from solution. Pressure/density relationships, determined by continuous compaction, and loose packed densities were used to show that small additions of zinc stearate reduced interparticle friction during loose packing and at low compaction pressures. Large additions decreased particle/die-wall friction during compaction and ejection but also caused compaction inhibition. Transverse rupture strengths were determined on compacts containing various stearate based lubricants and it was found that green strength was reduced by the interposition of a thin lubricant layer within inter~particle contacts. Only materials much finer than the iron powder respectively) were able to form such layers. Investigations were undertaken to determine the effect of the decomposition of these lubricants on the development of mechanical properties in dewaxed or sintered compacts. Physical and chemical influences on tensile strength were observed. Decomposition of lubricants was associated with reductions of strength caused by the physical effects of pressure increases and removal of lubricant from interparticle contacts. There were also chemical effects associated with the influence of gaseous decomposition products and solid residues on sintering mechanisms. Thermogravimetry was used to study the decomposition behaviour of various lubricants as free compounds and within compacts. The influence of process variables such as atmosphere type, flow-rate and compact density were investigated. In a reducing atmosphere the decomposition of these lubricants was characterised by two stages. The first involved the rapid decomposition of the hydrocarbon radical. The second, higher temperature, reactions depended on lubricant type and involved solid residues. The removal of lubricant could also markedly affect dimensional change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Linear Elastic Fracture Mechanics has been used to study the microstructural factors controlling the strength and toughness of two alpha-beta, titanium alloys. Fracture toughness was found to be independent of orientation for alloy Ti/6A1/4-V, but orientation dependent for IMI 700, bend and tension specimens giving similar toughness values. Increasing the solution temperature led to the usual inverse relationship between strength and toughness, with toughness becoming a minimum as the beta transus was approached. The production of a double heat treated microstructure led to a 100% increase in toughness in the high strength alloy and a 20% increase in alloy Ti/6A1/4V, with little decrease in strength. The double heat treated microstruoture was produced by cooling from the beta field into the alpha beta field, followed. by conventional solution treatment and ageing. Forging above the beta transus led to an increase in toughness over alpha beta forging in the high strength alloy, but had little effect on the toughness of Ti/6A1/4V. Light and electron microscopy showed that the increased toughness resulted from the alpha phase being changed from mainly continuous to a discontinuous platelet form in a transformed beta matrix. Void formation occurred at the alpha-beta interface and crack propagation was via the interface or across the platelet depending on which process required the least energy. Varying the solution treatment temperature produced a varying interplatelet spacing and platelet thickness. The finest interplatelet spacing was associated with the highest toughness, since a higher applied stress was required to give the necessary stress concentration to initiate void formation. The thickest alpha platelet size gave the highest toughness which could be interpreted in terms of Krafftt's "process zone size" and the critical crack tip displacement criterion by Hahn and Rosenfield from an analysis by Goodier and Field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An array of different structural probes has been used to define the effect of adding Zn and Ti to a sodium-calcium phosphate glass. X-ray absorption spectroscopy at the Zn K-edge suggests that the Zn atoms occupy mixed (4- and 6-fold) sites within the glass matrix. X-ray diffraction reveals a feature at 2.03 angstrom that develops with the addition of Zn and Ti and is consistent with Zn-O and Ti-O near-neighbour distances. Neutron diffraction is used to resolve two distinct P-O distances and highlights the decrease in P center dot center dot center dot P coordination number from 2.0 to 1.7 as the Ti metal concentration rises, which is attributed to the O/P fraction moving away from the metaphosphate value of 3.0 to 3.1 with the addition of Ti. Other correlations, such as those associated with CaO(x) and NaO(x) polyhedra, remain largely unaffected. These results suggest that the network forming P center dot center dot center dot P correlation is most disrupted, with the disorder parameter rising from 0.07 to 0.10 angstrom with the additional modifiers. Zn appears to be introduced into the network as a direct replacement for Ca and causes no structural variation over the composition range studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Globally, more than 1000 tonnes of titanium (Ti) is implanted into patients in the form of biomedical devices on an annual basis. Ti is perceived to be ‘biocompatible’ owing to the presence of a robust passive oxide film (approx. 4 nm thick) at the metal surface. However, surface deterioration can lead to the release of Ti ions, and particles can arise as the result of wear and/or corrosion processes. This surface deterioration can result in peri-implant inflammation, leading to the premature loss of the implanted device or the requirement for surgical revision. Soft tissues surrounding commercially pure cranial anchorage devices (bone-anchored hearing aid) were investigated using synchrotron X-ray micro-fluorescence spectroscopy and X-ray absorption near edge structure. Here, we present the first experimental evidence that minimal load-bearing Ti implants, which are not subjected to macroscopic wear processes, can release Ti debris into the surrounding soft tissue. As such debris has been shown to be pro-inflammatory, we propose that such distributions of Ti are likely to effect to the service life of the device.