973 resultados para Tissue Inhibitor of Metalloproteinases
Resumo:
The active fragment derived from factor XII (factor XIIf) was purified from human plasma and administered intravenously to normotensive conscious rats. Factor XIIf-mediated hypotension was dose-dependent and augmented by pretreatment with captopril, an inhibitor of the angiotensin I- and bradykinin-processing enzyme. In contrast, factor XIIf-induced hypotension was not enhanced by blockade of the renin-angiotensin system by saralasin, a competitive antagonist of angiotensin II at the vascular receptor level. These results suggest that factor XIIf-mediated hypotension is due to the formation of bradykinin.
Resumo:
The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reining queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes.
Resumo:
Bone morphogenetic protein (BMP)-2 and transforming growth factor (TGF)-beta1 are multifunctional cytokines both proposed as stimulants for cartilage repair. Thus it is crucial to closely examine and compare their effects on the expression of key markers of the chondrocyte phenotype, at the gene and protein level. In this study, the expression of alpha 10 and alpha 11 integrin subunits and the IIA/IIB spliced forms of type II procollagen have been monitored for the first time in parallel in the same in vitro model of mouse chondrocyte dedifferentiation/redifferentiation. We demonstrated that TGF-beta1 stimulates the expression of the non-chondrogenic form of type II procollagen, IIA isoform, and of a marker of mesenchymal tissues, i.e. the alpha 11 integrin subunit. On the contrary, BMP-2 stimulates the cartilage-specific form of type II procollagen, IIB isoform, and a specific marker of chondrocytes, i.e. the alpha 10 integrin subunit. Collectively, our results demonstrate that BMP-2 has a better capability than TGF-beta1 to stimulate chondrocyte redifferentiation and reveal that the relative expressions of type IIB to type IIA procollagens and alpha 10 to alpha 11 integrin subunits are good markers to define the differentiation state of chondrocytes. In addition, adenoviral expression of Smad6, an inhibitor of BMP canonical Smad signaling, did not affect expression of total type II procollagen or the ratio of type IIA and type IIB isoforms in mouse chondrocytes exposed to BMP-2. This result strongly suggests that signaling pathways other than Smad proteins are involved in the effect of BMP-2 on type II procollagen expression.
Resumo:
Skin appendages such as teeth and hair share several common signaling pathways. The nuclear factor I C (NFI-C) transcription factor has been implicated in tooth development, but a potential role in hair growth had not been assessed. In this study we found that NFI-C regulates the onset of the hair growth cycle. NFI-C(-/-) mice were delayed in the transition from the telogen to anagen phase of the hair follicle cycle after either experimental depilation or spontaneous hair loss. Lack of NFI-C resulted in delayed induction of the sonic hedgehog, Wnt5a, and Lef1 gene expression, which are key regulators of the hair follicle growth initiation. NFI-C(-/-) mice also showed elevated levels of transforming growth factor β1 (TGF-β1), an inhibitor of keratinocyte proliferation, and of the cell cycle inhibitor p21 at telogen. Reduced expression of Ki67, a marker of cell proliferation, was noted at the onset of anagen, indicating impaired activation of the hair progenitor cells. These findings implicate NFI-C in the repression of TGF-β1 signaling during telogen stage, resulting in the delay of progenitor cell proliferation and hair follicle regeneration in NFI-C-deficient mice. Taken together with prior observations, these findings also designate NFI-C as a regulator of adult progenitor cell proliferation and of postnatal tissue growth or regeneration.
Resumo:
BACKGROUND: Tyrosine kinase inhibitors (TKI) improve the outcome of patients with advanced gastrointestinal stromal tumour (GIST), but treatment failure is frequent, and prognosis then bleak. Smaller trials in this setting suggested activity for sorafenib, a multikinase inhibitor of receptor tyrosine kinases and RAF serine/threonine kinases. PATIENTS AND METHODS: We retrospectively evaluated the efficacy of sorafenib, starting dose 400mg twice daily, in a large community-based cohort of 124 patients treated in 12 European and one United States (U.S.) cancer centre. All but one patient had a WHO performance score 0-2. All had failed both imatinib and sunitinib, 68 patients nilotinib and 26 had failed investigational therapy, too. RESULTS: Twelve (10%) patients responded to sorafenib and 70 (57%) patients achieved disease stabilisation. Sorafenib was moderately tolerated, and toxicity reported in 56% of the patients. Rash, hand-foot-syndrome and diarrhea occurred frequently. Sorafenib dosage was reduced in a third of patients, but this did not have an impact on progression-free survival (PFS) (p=0.15). Median PFS was 6.4months (95% confidence interval [CI], 4.6-8.0months) and median overall survival (OS) 13.5months (95% CI, 10.0-21.0months). Patients with a good performance status and those who responded to sorafenib had a significant better PFS. CONCLUSION: We conclude that sorafenib is active in GIST resistant to imatinib, sunitinib and nilotinib. These results warrant further investigation of sorafenib or similar molecules in GIST.
Resumo:
Optimal seeding of a nerve conduit with cells is a core problem in tissue engineering of constructing an artificial nerve substitute to gap lesions in the peripheral nerve system. An ideal nerve gap substitute would have to present an equally distributed number of cells that can activate the regrowing axons. This work shows a new in vitro technique of two-step seeding of cells inside a conduit and on layered mats that allows a valuable targeting of the cells and a proven survival in the environment of poly-3-hydroxybutyrate (PHB) conduits. The technique uses two components of diluted fibrin glue Tisseel. Initially, the chosen area on the mat was coated with thrombin followed from the seeding of a fibrinogen-cell compound. Using Sprague Dawley rat cells, we could demonstrate with immunohistochemistry (S100, DAPI) techniques that undifferentiated (uMSC) and Schwann cells (SC) mimicking differentiated mesenchymal stem cells (dMSC) as well as SC can be suspended and targeted significantly better in dissolvable diluted fibrin glue than in growth medium. Analysis showed significantly better values for adherence (p < 0.001) and drop off (p < 0.05) from seeded cells. Using this two-step application allows the seeding of the cells to be more precise and simplifies the handling of cell transplantation.
Resumo:
Thyroid hormones are involved in the regulation of growth and metabolism in all vertebrates. Transthyretin is one of the extracellular proteins with high affinity for thyroid hormones which determine the partitioning of these hormones between extracellular compartments and intracellular lipids. During vertebrate evolution, both the tissue pattern of expression and the structure of the gene for transthyretin underwent characteristic changes. The purpose of this study was to characterize the position of Insectivora in the evolution of transthyretin in eutherians, a subclass of Mammalia. Transthyretin was identified by thyroxine binding and Western analysis in the blood of adult shrews, hedgehogs, and moles. Transthyretin is synthesized in the liver and secreted into the bloodstream, similar to the situation for other adult eutherians, birds, and diprotodont marsupials, but different from that for adult fish, amphibians, reptiles, monotremes, and Australian polyprotodont marsupials. For the characterization of the structure of the gene and the processing of mRNA for transthyretin, cDNA libraries were prepared from RNA from hedgehog and shrew livers, and full-length cDNA clones were isolated and sequenced. Sections of genomic DNA in the regions coding for the splice sites between exons 1 and 2 were synthesized by polymerase chain reaction and sequenced. The location of splicing was deduced from comparison of genomic with cDNA nucleotide sequences. Changes in the nucleotide sequence of the transthyretin gene during evolution are most pronounced in the region coding for the N-terminal region of the protein. Both the derived overall amino sequences and the N-terminal regions of the transthyretins in Insectivora were found to be very similar to those in other eutherians but differed from those found in marsupials, birds, reptiles, amphibians, and fish. Also, the pattern of transthyretin precursor mRNA splicing in Insectivora was more similar to that in other eutherians than to that in marsupials, reptiles, and birds. Thus, in contrast to the marsupials, with a different pattern of transthyretin gene expression in the evolutionarily "older" polyprotodonts compared with the evolutionarily "younger" diprotodonts, no separate lineages of transthyretin evolution could be identified in eutherians. We conclude that transthyretin gene expression in the liver of adult eutherians probably appeared before the branching of the lineages leading to modern eutherian species.
Resumo:
To analyze the effects of triamcinolone intravitreal injection on the wound healing processes after argon laser retinal photocoagulation, wild type C57BL/6J mice, 8-12 weeks old underwent a standard argon laser photocoagulation protocol. After pentobarbital anesthesia and pupil dilatation, argon laser lesions were induced (50microm, 400mW, 0.05s). Two photocoagulation impacts created two disc diameters from the optic nerve in both eyes. The photocoagulated mice were divided into four groups: Group I (n=12), photocoagulation controls, did not receive any intravitreous injection. Group II (n=12), received an intravitreous injection of 1microl of balanced salt solution (BSS). Group III (n=12), received an intravitreous injection of 1microl containing 15microg of triamcinolone acetonide (TAAC) in BSS. Two mice from each of these three groups were sacrificed at 1, 3, 7, 14 days and 2 and 4 months after photocoagulation. Group IV (n=10) received 1.5, 3, 7.5, 15, or 30microg of TAAC and were all sacrificed on day 14. The enucleated eyes were subjected to systematic analysis of the cellular remodeling processes taking place within the laser lesion and its vicinity. To this purpose, specific antibodies against GFAP, von Willebrand factor, F4/80 and KI67 were used for the detection of astrocytes, activated Müller cells, vascular endothelial cells, infiltrating inflammatory cells and actively proliferating cells. TUNEL reaction was also carried out along with nuclear DAPI staining. Temporal and spatial observations of the created photocoagulation lesions demonstrate that 24h following the argon laser beam, a localized and well-delineated affection of the RPE cells and choroid is observed in mice in Groups I and II. The inner retinal layers in these mice eyes are preserved while TUNEL positive (apoptotic) cells are observed at the retinal outer nuclear layer level. At this stage, intense staining with GFAP is associated with activated retinal astrocytes and Müller cells throughout the laser path. From day 3 after photocoagulation, dilated new choroidal capillaries are detected on the edges of the laser lesion. These processes are accompanied by infiltration of inflammatory cells and the presence of proliferating cells within the lesion site. Mice in Group III treated with 15microg/mul of triamcinolone showed a decreased number of infiltrating inflammatory cells and proliferating cells, which was not statistically significant compared to uninjected laser treated controls. The development of new choroidal capillaries on the edges of the laser lesion was also inhibited during the first 2 months after photocoagulation. However, on month 4 the growth of new vessels was observed in these mice treated with TAAC. Mice of Group IV did not show any development of new capillaries even with small doses. After argon laser photocoagulation of the mouse eye, intravitreal injection of triamcinolone markedly influenced the retina and choroid remodeling and healing processes. Triamcinolone is a powerful inhibitor of the formation of neovessels in this model. However, this inhibition is transient. These observations should provide a practical insight for the mode of TAAC use in patients with wet AMD.
Resumo:
The expression of the 240 ConA-binding glycoprotein (240 kDa), a marker of synaptic junctions isolated from the rat cerebellum, was studied by immunocytochemical techniques in forebrain and cerebellum from rat and chicken, and in chick dorsal root ganglia. Parallel studies were carried out either on tissue sections or in dissociated cell cultures. In all cases non neuronal cells were not immunostained. The tissue sections of cerebellum from rat and chick exhibited 240 kDa glycoprotein immunoreactivity, especially in the molecular layer, while the forebrain sections from rat and chick did not show any significant immunostaining. In contrast, in dissociated forebrain cell cultures, all neuronal cells expressed 240 kDa glycoprotein immunoreactivity, while glial cells remained totally unlabelled. In tissue sections of dorsal root ganglion (DRG), sensory neurons expressed the 240 kDa only after the embryonic day (E 10). A large number of small neurons in the dorsomedial part of DRG were immunostained with 240 kDa glycoprotein antiserum, whereas only a small number of neurons in the ventrolateral part of the ganglia displayed 240 kDa immunoreactivity. In dissociated DRG cells cultures (mixed or neuron-enriched DRG cell cultures) all the neuronal perikarya but not their processes were stained. These studies indicate that 240 kDa glycoprotein expression is completely modified in cultures of neurons of CNS or PNS since the antigen becomes synthetized in high amount by all cells independent of synapse formation. This demonstrates that the expression of 240 kDa is controlled by the cell environment.
Resumo:
T cells play a primordial role in antiviral immunity. Virus-specific T-cell responses can be characterized by a number of independent variables. These include the magnitude of the response; the functional quality of the response, i.e. the types of cytokines secreted after stimulation and the proliferative or lytic potential; the tissue distribution of the T cells; the breadth of the response; and the avidity of the response. All of these together constitute the T-cell response to antigen (Ag) and comprise potential variables that may correlate with antiviral protective immunity. Substantial advances have recently been obtained in the characterization of virus-specific T-cell responses. These studies have shown that the quality (in term of functional profile) rather than the quantity of Ag-specific T cells was associated with protection. Recently, the term polyfunctional has been used to define T-cell responses that, in addition to typical effector functions such as secretion of IFN-g, TNF-a and MIP-1b and cytotoxic activity, comprise distinct T-cell populations, also able to secrete IL-2 and retaining Ag-specific proliferation capacity. The term \only effector" defines T-cell responses/ populations able to secrete cytokines such as IFN-g, TNF-a and MIP-1b and endowed with cytotoxic activity but lacking IL-2 and proliferation capacity. Several models of virus infections (HIV-1, cytomegalovirus [CMV], Epstein Barr virus [EBV], influenza [Flu] and Herpes Simplex virus) exclusively differentiated on the basis of Ag exposure and persistence, were investigated: 1) antigen clearance, 2) protracted Ag exposure and persistence and low Ag levels, 3) Ag persistence and high Ag levels, and 4) acute Ag exposure/re-exposure. These analyses have demonstrated that polyfunctional and not \only effector" T-cell responses were associated with protective antiviral immunity. However, the factors and mechanisms governing the generation of functionally distinct T-cell populations remain to be elucidated. Recently, several studies have shown a major influence of HLA genotype in the evolution of HIV and the progression of HIV-associated disease. In particular, certain HLA-B alleles were most closely associated with non-progressive disease and low viral load or disease and had a dominant involvement on the clinical course of HIV-associated diseases. In this study, we have investigated the relationship between HLA restriction and the functional profile of Tcell responses in order to determine whether HLA-B influenced the generation of polyfunctional CD8 T-cell responses. To be able to address this issue, we studied CD8 T-cell responses against HIV-1, CMV, EBV and Flu in 128 subjects. These analyses enabled us to demonstrate that HLA-Arestricted epitopes were mostly associated with \only effector" T-cell responses while, in contrast, polyfunctional CD8 T-cell responses were predominantly driven by virus epitopes restricted by HLA-B alleles. We then characterized eventual differences in the responsiveness of CD8 T-cell populations restricted by different HLA-A and HLA-B alleles. For this purpose, we investigated the T-cell receptor (TCR) avidity for the cognate epitope of polyfunctional and \only effector" CD8 T-cell populations. Our results indicated that overall virus-specific CD8 T-cell populations recognizing virus epitopes restricted by HLA-B alleles were equipped with lower avidity TCR for the cognate epitopes when compared to those recognizing epitopes restricted by HLA-A alleles. In conclusion, these results provide the rationale for the observed protective role of HLA-B genotypes in HIV-1- infection and new insights into the relationship between TCR avidity and functional profile of virus-specific CD8 Tcells.
Resumo:
End-stage renal disease patients have endothelial dysfunction and high plasma levels of ADMA (asymmetric omega-NG,NG-dimethylarginine), an endogenous inhibitor of NOS (NO synthase). The actual link between these abnormalities is controversial. Therefore, in the present study, we investigated whether HD (haemodialysis) has an acute impact on NO-dependent vasodilation and plasma ADMA in these patients. A total of 24 patients undergoing maintenance HD (HD group) and 24 age- and gender-matched healthy controls (Control group) were enrolled. The increase in forearm SkBF (skin blood flow) caused by local heating to 41 degrees C (SkBF41), known to depend on endothelial NO production, was determined with laser Doppler imaging. SkBF41 was expressed as a percentage of the vasodilatory reserve obtained from the maximal SkBF induced by local heating to 43 degrees C (independent of NO). In HD patients, SkBF41 was assessed on two successive HD sessions, once immediately before and once immediately after HD. Plasma ADMA was assayed simultaneously with MS/MS (tandem MS). In the Control group, SkBF41 was determined twice, on two different days, and plasma ADMA was assayed once. In HD patients, SkBF41 was identical before (82.2+/-13.1%) and after (82.7+/-12.4%) HD, but was lower than in controls (day 1, 89.6+/-6.1; day 2, 89.2+/-6.9%; P<0.01 compared with the HD group). In contrast, plasma ADMA was higher before (0.98+/-0.17 micromol/l) than after (0.58+/-0.10 micromol/l; P<0.01) HD. ADMA levels after HD did not differ from those obtained in controls (0.56+/-0.11 micromol/l). These findings show that HD patients have impaired NO-dependent vasodilation in forearm skin, an abnormality not acutely reversed by HD and not explained by ADMA accumulation.
Resumo:
Head and neck cancer patients are at high risk for developing second primary tumors. This is known as field cancerization of the aero-digestive tract. In a previous study, we showed that patients with multiple primary tumors were more likely to have p53 mutations in histologically normal mucosae than patients presenting with an isolated tumor. Based on this observation, we postulated that p53 mutations in normal tissue samples of patients bearing a single primary tumor could have a clinical value as a biomarker for the risk of developing second primary tumors. Thirty-five patients presenting with a single primary tumor were followed-up for a median of 51 months (range 1 month to 10.9 years) after biopsies of histologically normal squamous cell mucosa had been analyzed for p53 mutations with a yeast functional assay at the time of the primary tumor. During this follow-up, recurrences and non-sterilization of the primary tumor, occurrence of lymph node metastases, and of second primary tumors were evaluated. Sixteen (45.7%) patients were found to have p53 mutations in their normal squamous cell mucosa, and 19 (54.3%) patients showed no mutation. No relationship was found between p53 mutations and the occurrence of evaluated events during follow-up. Notably, the rate of second primary tumors was not associated with p53 mutations in the normal squamous mucosa. The correlation between p53 mutations in histologically normal mucosae and the incidence of second primary tumors is generally low. The benefit of analyzing p53 mutations in samples of normal squamous cell mucosa in every patient with a primary tumor of the head and neck is doubtful.
Resumo:
Patients with type 2 diabetes mellitus exhibit a marked increase in cardiovascular and renal risk. A number of interventional trials have shown that these patients benefit greatly from aggressive BP lowering, especially when the drug regimen comprises an inhibitor of the renin-angiotensin system. The results of the placebo-controlled ADVANCE (Action in Diabetes and Vascular disease: PreterAx and DiamicroN MR Controlled Evaluation) trial, conducted in patients with type 2 diabetes, are exemplary in this respect. The systematic use of a fixed-dose combination containing the ACE inhibitor perindopril and the diuretic indapamide afforded substantial protection against cardiovascular mortality and myocardial infarction, while providing important renoprotection, reducing the development of micro- and macroalbuminuria, and allowing regression of nephropathy. The beneficial effects were obtained regardless of baseline BP and whether or not the patients were receiving antihypertensive therapy.
Resumo:
PURPOSE: The macromolecule signal plays a key role in the precision and the accuracy of the metabolite quantification in short-TE (1) H MR spectroscopy. Macromolecules have been reported at 1.5 Tesla (T) to depend on the cerebral studied region and to be age specific. As metabolite concentrations vary locally, information about the profile of the macromolecule signal in different tissues may be of crucial importance. METHODS: The aim of this study was to investigate, at 7T for healthy subjects, the neurochemical profile differences provided by macromolecule signal measured in two different tissues in the occipital lobe, predominantly composed of white matter tissue or of grey matter tissue. RESULTS: White matter-rich macromolecule signal was relatively lower than the gray matter-rich macromolecule signal from 1.5 to 1.8 ppm and from 2.3 to 2.5 ppm with mean difference over these regions of 7% and 12% (relative to the reference peak at 0.9 ppm), respectively. The neurochemical profiles, when using either of the two macromolecule signals, were similar for 11 reliably quantified metabolites (CRLB < 20%) with relatively small concentration differences (< 0.3 μmol/g), except Glu (± 0.8 μmol/g). CONCLUSION: Given the small quantification differences, we conclude that a general macromolecule baseline provides a sufficiently accurate neurochemical profile in occipital lobe at 7T in healthy human brain.
Resumo:
Although metabolic syndrome (MS) and systemic lupus erythematosus (SLE) are often associated, a common link has not been identified. Using the BWF1 mouse, which develops MS and SLE, we sought a molecular connection to explain the prevalence of these two diseases in the same individuals. We determined SLE- markers (plasma anti-ds-DNA antibodies, splenic regulatory T cells (Tregs) and cytokines, proteinuria and renal histology) and MS-markers (plasma glucose, non-esterified fatty acids, triglycerides, insulin and leptin, liver triglycerides, visceral adipose tissue, liver and adipose tissue expression of 86 insulin signaling-related genes) in 8-, 16-, 24-, and 36-week old BWF1 and control New-Zealand-White female mice. Up to week 16, BWF1 mice showed MS-markers (hyperleptinemia, hyperinsulinemia, fatty liver and visceral adipose tissue) that disappeared at week 36, when plasma anti-dsDNA antibodies, lupus nephritis and a pro-autoimmune cytokine profile were detected. BWF1 mice had hyperleptinemia and high splenic Tregs till week 16, thereby pointing to leptin resistance, as confirmed by the lack of increased liver P-Tyr-STAT-3. Hyperinsulinemia was associated with a down-regulation of insulin related-genes only in adipose tissue, whereas expression of liver mammalian target of rapamicyn (mTOR) was increased. Although leptin resistance presented early in BWF1 mice can slow-down the progression of autoimmunity, our results suggest that sustained insulin stimulation of organs, such as liver and probably kidneys, facilitates the over-expression and activity of mTOR and the development of SLE.