897 resultados para Time and state dependent rules
Resumo:
Shaw & Shoemaker
Resumo:
Includes also the state constitution, territorial and state officers, members of the Legislature, standing committees, employees, etc.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
2000 Mathematics Subject Classification: primary: 60J80, 60J85, secondary: 62M09, 92D40
Resumo:
We consider the suppression of spatiotemporal chaos in the complex GinzburgLandau equation by a combined global and local time-delay feedback. Feedback terms are implemented as a control scheme, i.e., they are proportional to the difference between the time-delayed state of the system and its current state. We perform a linear stability analysis of uniform oscillations with respect to space-dependent perturbations and compare with numerical simulations. Similarly, for the fixed-point solution that corresponds to amplitude death in the spatially extended system, a linear stability analysis with respect to space-dependent perturbations is performed and complemented by numerical simulations. © 2010 Elsevier B.V. All rights reserved.
Resumo:
Nephrops norvegicus is a sedentary bottom-dwelling crustacean that represents one of the main commercial species exploited in the Adriatic Sea (Central Mediterranean). An evaluation of the status of this important resource is thus extremely important in order to manage it in a sustainable way. The evaluation of N. norvegicus is complicated by several issues, mainly: (i) the complex biology and behaviour of the species itself, (ii) the presence of subpopulations with different biological traits within the same stock unit. Relevant concentration of N.norvegicus occurs within the Pomo/Jabuka Pits area which is characterised by peculiar oceanographic and geophysical conditions. This area represented for a long time an important fishing ground shared by Italian and Croatian fleets and recently a Fishery Restricted Area (FRA) was established there. The aim of the present study is to perform for the first time an evaluation of the status of the N.norvegicus subpopulation inhabiting the Pomo/Jabuka Pits also accounting for the possible effects on it of the management measures. To achieve this, the principal fisheryindependent and fishery-dependent dataset available for the study area were firstly analysed and then treated. Data collected by the CNR-IRBIM of Ancona through both indirect (“UWTV”) and direct (trawling) methods were refined by means of a revision of the time series and related biases, and a modelling approach accounting for environmental and fishery effects, respectively. Commercial data for both Italy and Croatia were treated in order to obtain landings and length distributions for the Pomo area only; an historical reconstruction of data starting from 1970 was carried out for both countries. The obtained information was used as input for a Bayesian length-based stock assessment model developed through the CASAL software; the flexibility of this model is recommended for N.norvegicus and similar species allowing to deal with sex- and fleet-based integrated assessment method
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.
Resumo:
In this paper, space adaptivity is introduced to control the error in the numerical solution of hyperbolic systems of conservation laws. The reference numerical scheme is a new version of the discontinuous Galerkin method, which uses an implicit diffusive term in the direction of the streamlines, for stability purposes. The decision whether to refine or to unrefine the grid in a certain location is taken according to the magnitude of wavelet coefficients, which are indicators of local smoothness of the numerical solution. Numerical solutions of the nonlinear Euler equations illustrate the efficiency of the method. © Springer 2005.
Resumo:
Ion channels are pores formed by proteins and responsible for carrying ion fluxes through cellular membranes. The ion channels can assume conformational states thereby controlling ion flow. Physically, the conformational transitions from one state to another are associated with energy barriers between them and are dependent on stimulus, such as, electrical field, ligands, second messengers, etc. Several models have been proposed to describe the kinetics of ion channels. The classical Markovian model assumes that a future transition is independent of the time that the ion channel stayed in a previous state. Others models as the fractal and the chaotic assume that the rate of transitions between the states depend on the time that the ionic channel stayed in a previous state. For the calcium activated potassium channels of Leydig cells the R/S Hurst analysis has indicated that the channels are long-term correlated with a Hurst coefficient H around 0.7, showing a persistent memory in this kinetic. Here, we applied the R/S analysis to the opening and closing dwell time series obtained from simulated data from a chaotic model proposed by L. Liebovitch and T. Toth [J. Theor. Biol. 148, 243 (1991)] and we show that this chaotic model or any model that treats the set of channel openings and closings as independent events is inadequate to describe the long-term correlation (memory) already described for the experimental data. (C) 2008 American Institute of Physics.
Resumo:
This work considers a nonlinear time-varying system described by a state representation, with input u and state x. A given set of functions v, which is not necessarily the original input u of the system, is the (new) input candidate. The main result provides necessary and sufficient conditions for the existence of a local classical state space representation with input v. These conditions rely on integrability tests that are based on a derived flag. As a byproduct, one obtains a sufficient condition of differential flatness of nonlinear systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The objective of this work was to carry a descriptive analysis in the monthly precipitation of rainfall stations from Rio de Janeiro State, Brazil, using data of position and dispersion and graphical analyses, and to verify the presence of seasonality and trend in these data, with a study about the application of models of time series. The descriptive statistics was to characterize the general behavior of the series in three stations selected which present consistent historical series. The methodology of analysis of variance in randomized blocks and the determination of models of multiple linear regression, considering years and months as predictors variables, disclosed the presence of seasonality, what allowed to infer on the occurrence of repetitive natural phenomena throughout the time and absence of trend in the data. It was applied the methodology of multiple linear regression to removal the seasonality of these time series. The original data had been deducted from the estimates made by the adjusted model and the analysis of variance in randomized blocks for the residues of regression was preceded again. With the results obtained it was possible to conclude that the monthly rainfall present seasonality and they don`t present trend, the analysis of multiple regression was efficient in the removal of the seasonality, and the rainfall can be studied by means of time series.
Resumo:
The interlayer magnetoresistance of layered metals in a tilted magnetic field is calculated for two distinct models for the interlayer transport. The first model involves coherent interlayer transport, and makes use of results of semiclassical or Bloch-Boltzmann transport theory. The second model involves weakly incoherent interlayer transport where the electron is scattered many times within a layer before tunneling into the next layer. The results are relevant to the interpretation of experiments on angular-dependent magnetoresistance oscillations (AMRO) in quasi-one- and quasi-two-dimensional organic metals. We find that the dependence of the magnetoresistance on the direction of the magnetic field is identical for both models except when the field is almost parallel to the layers. An important implication of this result is that a three-dimensional Fermi surface is not necessary for the observation of the Yamaji and Danner oscillations seen in quasi-two- and quasi-one-dimensional metals, respectively. A universal expression is given for the dependence of the resistance at AMRO maxima and minima on the magnetic field and scattering time (and thus the temperature). We point out three distinctive features of coherent interlayer transport: (i) a beat frequency in the magnetic oscillations of quasi-two-dimensional systems, (ii) a peak in the angular-dependent magnetoresistance when the field is sufficiently large and parallel to the layers, and (iii) a crossover from a linear to a quadratic field dependence for the magnetoresistance when the field is parallel to the layers. Properties (i) and (ii) are compared with published experimental data for a range of quasi-two-dimensional organic metals. [S0163-1829(99)02236-5].
Resumo:
A decision theory framework can be a powerful technique to derive optimal management decisions for endangered species. We built a spatially realistic stochastic metapopulation model for the Mount Lofty Ranges Southern Emu-wren (Stipiturus malachurus intermedius), a critically endangered Australian bird. Using diserete-time Markov,chains to describe the dynamics of a metapopulation and stochastic dynamic programming (SDP) to find optimal solutions, we evaluated the following different management decisions: enlarging existing patches, linking patches via corridors, and creating a new patch. This is the first application of SDP to optimal landscape reconstruction and one of the few times that landscape reconstruction dynamics have been integrated with population dynamics. SDP is a powerful tool that has advantages over standard Monte Carlo simulation methods because it can give the exact optimal strategy for every landscape configuration (combination of patch areas and presence of corridors) and pattern of metapopulation occupancy, as well as a trajectory of strategies. It is useful when a sequence of management actions can be performed over a given time horizon, as is the case for many endangered species recovery programs, where only fixed amounts of resources are available in each time step. However, it is generally limited by computational constraints to rather small networks of patches. The model shows that optimal metapopulation, management decisions depend greatly on the current state of the metapopulation,. and there is no strategy that is universally the best. The extinction probability over 30 yr for the optimal state-dependent management actions is 50-80% better than no management, whereas the best fixed state-independent sets of strategies are only 30% better than no management. This highlights the advantages of using a decision theory tool to investigate conservation strategies for metapopulations. It is clear from these results that the sequence of management actions is critical, and this can only be effectively derived from stochastic dynamic programming. The model illustrates the underlying difficulty in determining simple rules of thumb for the sequence of management actions for a metapopulation. This use of a decision theory framework extends the capacity of population viability analysis (PVA) to manage threatened species.
Resumo:
The population growth of a Staphylococcus aureus culture, an active colloidal system of spherical cells, was followed by rheological measurements, under steady-state and oscillatory shear flows. We observed a rich viscoelastic behavior as a consequence of the bacteria activity, namely, of their multiplication and density-dependent aggregation properties. In the early stages of growth (lag and exponential phases), the viscosity increases by about a factor of 20, presenting several drops and full recoveries. This allows us to evoke the existence of a percolation phenomenon. Remarkably, as the bacteria reach their late phase of development, in which the population stabilizes, the viscosity returns close to its initial value. Most probably, this is caused by a change in the bacteria physiological activity and in particular, by the decrease of their adhesion properties. The viscous and elastic moduli exhibit power-law behaviors compatible with the "soft glassy materials" model, whose exponents are dependent on the bacteria growth stage. DOI: 10.1103/PhysRevE.87.030701.