878 resultados para Thermo-mechanical finite element model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As our population ages, more individuals suffer from osteoporosis. This disease leads to impaired trabecular architecture and increased fracture risk. It is essential to understand how morphological and mechanical properties of the cancellous bone are related. Morphologyelasticity relationships based on bone volume fraction (BV/TV) and fabric anisotropy explain up to 98% of the variation in elastic properties. Yet, other morphological variables such as individual trabeculae segmentation (ITS) and trabecular bone score (TBS) could improve the stiffness predictions. A total of 743 micro-computed tomography reconstructions of cubic trabecular bone samples extracted from femur, radius, vertebrae and iliac crest were analysed. Their morphology was assessed via 25 variables and their stiffness tensor (inline image) was computed from six independent load cases using micro finite element analyses. Variance inflation factors were calculated to evaluate collinearity between morphological variables and decide upon their inclusion in morphology-elasticity relationships. The statistically admissible morphological variables were included in a multi-linear regression modelling the dependent variable inline image. The contribution of each independent variable was evaluated (ANOVA). Our results show that BV/TV is the best determinant of inline image (inline image=0.889), especially in combination with fabric (inline image=0.968). Including the other independent predictors hardly affected the amount of variance explained by the model (inline image=0.975). Across all anatomical sites, BV/TV explained 87% of the variance of the bone elastic properties. Fabric further described 10% of the bone stiffness, but the improvement in variance explanation by adding other independent factors was marginal (<1%). These findings confirm that BV/TV and fabric are the best determinants of trabecular bone stiffness and show, against common belief, that other morphological variables do not bring any further contribution. These overall conclusions remain to be confirmed for specific bone diseases and post-elastic properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Skeletal diseases such as osteoporosis impose a severe socio-economic burden to ageing societies. Decreasing mechanical competence causes a rise in bone fracture incidence and mortality especially after the age of 65 y. The mechanisms of how bone damage is accumulated under different loading modes and its impact on bone strength are unclear. We hypothesise that damage accumulated in one loading mode increases the fracture risk in another. This study aimed at identifying continuum damage interactions between tensile and compressive loading modes. We propose and identify the material constants of a novel piecewise 1D constitutive model capable of describing the mechanical response of bone in combined tensile and compressive loading histories. We performed several sets of loading–reloading experiments to compute stiffness, plastic strains, and stress-strain curves. For tensile overloading, a stiffness reduction (damage) of 60% at 0.65% accumulated plastic strain was detectable as stiffness reduction of 20% under compression. For compressive overloading, 60% damage at 0.75% plastic strain was detectable as a stiffness reduction of 50% in tension. Plastic strain at ultimate stress was the same in tension and compression. Compression showed softening and tension exponential hardening in the post-yield regime. The hardening behaviour in compression is unaffected by a previous overload in tension but the hardening behaviour in tension is affected by a previous overload in compression as tensile reloading strength is significantly reduced. This paper demonstrates how damage accumulated under one loading mode affects the mechanical behaviour in another loading mode. To explain this and to illustrate a possible implementation we proposed a theoretical model. Including such loading mode dependent damage and plasticity behaviour in finite element models will help to improve fracture risk analysis of whole bones and bone implant structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite element (FE) analysis is an important computational tool in biomechanics. However, its adoption into clinical practice has been hampered by its computational complexity and required high technical competences for clinicians. In this paper we propose a supervised learning approach to predict the outcome of the FE analysis. We demonstrate our approach on clinical CT and X-ray femur images for FE predictions ( FEP), with features extracted, respectively, from a statistical shape model and from 2D-based morphometric and density information. Using leave-one-out experiments and sensitivity analysis, comprising a database of 89 clinical cases, our method is capable of predicting the distribution of stress values for a walking loading condition with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest that supervised learning approaches have the potential to leverage the clinical integration of mechanical simulations for the treatment of musculoskeletal conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A diferencia de otros parámetros, el efecto de la existencia de huecos en la aparición y desarrollo de los procesos de fisuración en los paños de fábrica no ha sido considerado por las distintas normativas existentes en la actualidad. En nuestros días se emplea una variada gama de tipologías de elementos de cerramiento para realizar las particiones en las obras de edificación, cada una de ellas con características mecánicas diferentes y distinta metodología de ejecución, siendo de aplicación la misma normativa relativa al cálculo y control de las deformaciones. Tal y como expresamos en el Capitulo 1, en el que se analiza el Estado del Conocimiento, los códigos actuales determinan de forma analítica la flecha probable que se alcanza en los elementos portantes estructurales bajo diferentes condiciones de servicio. Las distintas propuestas que existen respecto para la limitación de la flecha activa, una vez realizado el cálculo de las deformaciones, bien por el método de Branson ó mediante los métodos de integración de curvaturas, no contemplan como parámetro a considerar en la limitación de la flecha activa la existencia y tipología de huecos en un paño de fábrica soportado por la estructura. Sin embargo se intuye y podríamos afirmar que una discontinuidad en cualquier elemento sometido a esfuerzos tiene influencia en el estado tensional del mismo. Si consideramos que, de forma general, los procesos de fisuración se producen al superarse la resistencia a tracción de material constitutivo de la fábrica soportada, es claro que la variación tensional inducida por la existencia de huecos ha de tener cierta influencia en la aparición y desarrollo de los procesos de fisuración en los elementos de partición o de cerramiento de las obras de edificación. En los Capítulos 2 y 3 tras justificar la necesidad de realizar una investigación encaminada a confirmar la relación entre la existencia de huecos en un paño de fábrica y el desarrollo de procesos de fisuración en el mismo, se establece este aspecto como principal Objetivo y se expone la Metodología para su análisis. Hemos definido y justificado en el Capítulo 4 el modelo de cálculo que hemos utilizado para determinar las deformaciones y los procesos de fisuración que se producen en los casos a analizar, en los que se han considerado como variables: los valores de la luz del modelo, el estado de fisuración de los elementos portantes, los efectos de la fluencia y el porcentaje de transmisión de cargas desde el forjado superior al paño de fábrica en estudio. Además se adoptan dos valores de la resistencia a tracción de las fábricas, 0.75MPa y 1.00MPa. La capacidad de representar la fisuración, así como la robustez y fiabilidad ha condicionado y justificado la selección del programa de elementos finitos que se ha utilizado para realizar los cálculos. Aprovechando la posibilidad de reproducir de forma ajustada las características introducidas para cada parámetro, hemos planteado y realizado un análisis paramétricos que considera 360 cálculos iterativos, de cuya exposición es objeto el Capítulo 5, para obtener una serie representativa de resultados sobre los que se realizará el análisis posterior. En el Capítulo 6, de análisis de los resultados, hemos estudiado los valores de deformaciones y estados de fisuración obtenidos para los casos analizados. Hemos determinado la influencia que tiene la presencia de huecos en la aparición de los procesos de fisuración y en las deformaciones que se producen en las diferentes configuraciones estructurales. Las conclusiones que hemos obtenido tras analizar los resultados, incluidas en el Capítulo 7, no dejan lugar a dudas: la presencia, la posición y la tipología de los huecos en los elementos de fábricas soportadas sobre estructuras deformables son factores determinantes respecto de la fisuración y pueden tener influencia en las deformaciones que constituyen la flecha activa del elemento, lo que obliga a plantear una serie de recomendaciones frente al proyecto y frente a la reglamentación técnica. La investigación desarrollada para esta Tesis Doctoral y la metodología aplicada para su desarrollo abre nuevas líneas de estudio, que se esbozan en el Capítulo 8, para el análisis de otros aspectos que no han sido cubiertos por esta investigación a fin de mejorar las limitaciones que deberían establecerse para los Estados Límite de Servicio de Deformaciones correspondientes a las estructuras de edificación. SUMMARY. Unlike other parameters, the effect of the existence of voids in the arising and development of cracking processes in the masonry walls has not been considered by current Codes. Nowadays, a huge variety of enclosure elements types is used to execute partitions in buildings, each one with different mechanical characteristics and different execution methodology, being applied the same rules concerning deflection calculation and control. As indicated in Chapter 1, which analyzes the State of Art, current codes analytically determine the deflection likely to be achieved in structural supporting elements under different service conditions. The different proposals that exist related to live deflection limitation, once performed deformations calculation, either by Branson´s method or considering curvatures integration methods, do not consider in deflection limitation the existence and typology of voids in a masonry wall structured supported. But is sensed and it can be affirmed that a discontinuity in any element under stress influences the stress state of it. If we consider that, in general, cracking processes occur when masonry material tensile strength is exceeded, it is clear that tension variation induced by the existence of voids must have some influence on the emergence and development of cracking processes in enclosure elements of building works. In Chapters 2 and 3, after justifying the need for an investigation to confirm the relationship between the existence of voids in a masonry wall and the development of cracking process in it, is set as the main objective and it is shown the analysis Methodology. We have defined and justified in Chapter 4 the calculation model used to determine the deformation and cracking processes that occur in the cases analyzed, in which were considered as variables: model span values, bearing elements cracking state, creep effects and load transmission percentage from the upper floor to the studied masonry wall. In addition, two masonry tensile strength values 0.75MPa and 1.00MPa have been considered. The cracking consideration ability, robustness and reliability has determined and justified the selection of the finite element program that was used for the calculations. Taking advantage of the ability of accurately consider the characteristics introduced for each parameter, we have performed a parametric analyses that considers 360 iterative calculations, whose results are included in Chapter 5, in order to obtain a representative results set that will be analyzed later. In Chapter 6, results analysis, we studied the obtained values of deformation and cracking configurations for the cases analyzed. We determined the influence of the voids presence in the occurrence of cracking processes and deformations in different structural configurations. The conclusions we have obtained after analyzing the results, included in Chapter 7, leave no doubt: the presence, position and type of holes in masonry elements supported on deformable structures are determinative of cracking and can influence deformations which are the element live deflection, making necessary to raise a number of recommendations related to project and technical regulation. The research undertaken for this Doctoral Thesis and the applied methodology for its development opens up new lines of study, outlined in Chapter 8, for the analysis of other aspects that are not covered by this research, in order to improve the limitations that should be established for Deflections Serviceability Limit States related to building structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los nudos son los defectos que más disminuyen la resistencia de piezas de madera en la escala estructural, al ocasionar no solo una discontinuidad material, sino también la desviación de las fibras que se encuentran a su alrededor. En la década de los 80 se introdujo la teoría de la analogía fluido-fibra, como un método que aproximaba adecuadamente todas estas desviaciones. Sin embargo en su aplicación tridimensional, nunca se consideraron las diferencias geométricas en el sentido perpendicular al eje longitudinal de las piezas estructurales, lo cual imposibilitaba la simulación numérica de algunos de los principales tipos de nudos, y disminuía la precisión obtenida en aquellos nudos en los que la modelización sí era viable. En este trabajo se propone un modelo programado en lenguaje paramétrico de un software de elementos finitos que, bajo una formulación en tres dimensiones más general, permitirá estudiar de forma automatizada el comportamiento estructural de la madera bajo la influencia de los principales tipos de nudos, a partir de la geometría visible de los mismos y la posición de la médula en la pieza, y el cual ha sido contrastado experimentalmente, simulando de forma muy precisa el comportamiento mecánico de vigas sometidas a ensayos de flexión a cuatro puntos. Knots are the defects that most reduce the strength of lumber at the structural level, by causing not only a material discontinuity but also the deviation of the fibers that surround them. In the 80's it was introduced the theory of the flow-grain analogy as a method to approximating adequately these deviations. However, in three-dimensional applications, geometrical differences in the direction perpendicular to the longitudinal axis of the structural specimens were never considered before, which prevented the numerical simulation of some of the main types of knots, and decreased the achieved precision in those kind of knots where modeling itself was possible. This paper purposes a parametric model programmed in a finite element software, in the way that with a more general three-dimensional formulation, an automated study of the structural behavior of timber under the influence of the main types of knots is allowed by only knowing the visible geometry of such defects, and the position of the pith. Furthermore that has been confirmed experimentally obtaining very accurately simulations of the mechanical behavior of beams under four points bending test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amundsenisen is an ice field, 80 km2 in area, located in Southern Spitsbergen, Svalbard. Radio-echo sounding measurements at 20 MHz show high intensity returns from a nearly flat basal reflector at four zones, all of them with ice thickness larger than 500m. These reflections suggest possible subglacial lakes. To determine whether basal liquid water is compatible with current pressure and temperature conditions, we aim at applying a thermo mechanical model with a free boundary at the bed defined as solution of a Stefan problem for the interface ice-subglaciallake. The complexity of the problem suggests the use of a bi-dimensional model, but this requires that well-defined flowlines across the zones with suspected subglacial lakes are available. We define these flow lines from the solution of a three-dimensional dynamical model, and this is the main goal of the present contribution. We apply a three-dimensional full-Stokes model of glacier dynamics to Amundsenisen icefield. We are mostly interested in the plateau zone of the icefield, so we introduce artificial vertical boundaries at the heads of the main outlet glaciers draining Amundsenisen. At these boundaries we set velocity boundary conditions. Velocities near the centres of the heads of the outlets are known from experimental measurements. The velocities at depth are calculated according to a SIA velocity-depth profile, and those at the rest of the transverse section are computed following Nye’s (1952) model. We select as southeastern boundary of the model domain an ice divide, where we set boundary conditions of zero horizontal velocities and zero vertical shear stresses. The upper boundary is a traction-free boundary. For the basal boundary conditions, on the zones of suspected subglacial lakes we set free-slip boundary conditions, while for the rest of the basal boundary we use a friction law linking the sliding velocity to the basal shear stress,in such a way that, contrary to the shallow ice approximation, the basal shear stress is not equal to the basal driving stress but rather part of the solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To study the fluid motion-vehicle dynamics interaction, a model of four, liquid filled two-axle container freight wagons was set up. The railway vehicle has been modelled as a multi-body system (MBS). To include fluid sloshing, an equivalent mechanical model has been developed and incorporated. The influence of several factors has been studied in computer simulations, such as track defects, curve negotiation, train velocity, wheel wear, liquid and solid wagonload, and container baffles. SIMPACK has been used for MBS analysis, and ANSYS for liquid sloshing modelling and equivalent mechanical systems validation. Acceleration and braking manoeuvres of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. The coupling gear consists of UIC standard traction hooks and coupling screws that are located between buffers. One of the coupling screws is placed in the traction hook of the opposite wagon thus joining the two wagons, whereas the unused coupling screw rests on a hanger. Simulation results showed that, for certain combinations of type of liquid, filling level and container dimensions, the liquid cargo could provoke an undesirable, although not hazardous, release of the unused coupling screw from its hanger. The coupling screw's release was especially obtained when a period of acceleration was followed by an abrupt braking manoeuvre at 1 m/s2. It was shown that a resonance effect between the liquid's oscillation and the coupling screw's rotary motion could be the reason for the coupling screw's undesired release. Possible solutions to avoid the phenomenon are given.Acceleration and braking manoeuvres of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. The coupling gear consists of UIC standard traction hooks and coupling screws that are located between buffers. One of the coupling screws is placed in the traction hook of the opposite wagon thus joining the two wagons, whereas the unused coupling screw rests on a hanger. This paper reports on a study of the fluid motion-train vehicle dynamics interaction. In the study, a model of four, liquid-filled two-axle container freight wagons was developed. The railway vehicle has been modeled as a multi-body system (MBS). To include fluid sloshing, an equivalent mechanical model has been developed and incorporated. The influence of several factors has been studied in computer simulations, such as track defects, curve negotiation, train velocity, wheel wear, liquid and solid wagonload, and container baffles. A simulation program was used for MBS analysis, and a finite element analysis program was used for liquid sloshing modeling and equivalent mechanical systems validation. Acceleration and braking maneuvers of the freight train set the liquid cargo into motion. This longitudinal sloshing motion of the fluid cargo inside the tanks initiated a swinging motion of some components of the coupling gear. Simulation results showed that, for certain combinations of type of liquid, filling level and container dimensions, the liquid cargo could provoke an undesirable, although not hazardous, release of an unused coupling screw from its hanger. It was shown that a resonance effect between the liquid's oscillation and the coupling screw's rotary motion could be the reason for the coupling screw's undesired release. Solutions are suggested to avoid the resonance problem, and directions for future research are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Overhead rigid conductor arrangements for current collection for railway traction have some advantages compared to other, more conventional, energy supply systems. They are simple, robust and easily maintained, not to mention their flexibility as to the required height for installation, which makes them particularly suitable for use in subway infrastructures. Nevertheless, due to the increasing speeds of new vehicles running on modern subway lines, a more efficient design is required for this kind of system. In this paper, the authors present a dynamic analysis of overhead conductor rail systems focused on the design of a new conductor profile with a dynamic behaviour superior to that of the system currently in use. This means that either an increase in running speed can be attained, which at present does not exceed 110 km/h, or an increase in the distance between the rigid catenary supports with the ensuing saving in installation costs. This study has been carried out using simulation techniques. The ANSYS programme has been used for the finite element modelling and the SIMPACK programme for the elastic multibody systems analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

EWT back contact solar cells are manufactured from very thin silicon wafers. These wafers are drilled by means of a laser process creating a matrix of tiny holes with a density of approximately 125 holes per square centimeter. Their influence in the stiffness and mechanical strength has been studied. To this end, both wafers with and without holes have been tested with the ring on ring test. Numerical simulations of the tests have been carried out through the Finite Element Method taking into account the non-linearities present in the tests. It's shown that one may use coarse meshes without holes to simulate the test and after that sub models are used for the estimation of the stress concentration around the holes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on our needs, that is to say, through precise simulation of the impact phenomena that may occur inside a jet engine turbine with an explicit non-linear finite element code, four new material models are postulated. Each one of is calibrated for four high-performance alloys that can be encountered in a modern jet engine. A new uncoupled material model for high strain and ballistic is proposed. Based on a Johnson-Cook type model, the proposed formulation introduces the effect of the third deviatoric invariant by means of three different Lode angle dependent functions. The Lode dependent functions are added to both plasticity and failure models. The postulated model is calibrated for a 6061-T651 aluminium alloy with data taken from the literature. The fracture pattern predictability of the JCX material model is shown performing numerical simulations of various quasi-static and dynamic tests. As an extension of the above-mentioned model, a modification in the thermal softening behaviour due to phase transformation temperatures is developed (JCXt). Additionally, a Lode angle dependent flow stress is defined. Analysing the phase diagram and high temperature tests performed, phase transformation temperatures of the FV535 stainless steel are determined. The postulated material model constants for the FV535 stainless steel are calibrated. A coupled elastoplastic-damage material model for high strain and ballistic applications is presented (JCXd). A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson-Cook failure criterion. The weakening in the elastic law and in the Johnson-Cook type constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. A transversely isotropic material model for directionally solidified alloys is presented. The proposed yield function is based a single linear transformation of the stress tensor. The linear operator weighs the degree of anisotropy of the yield function. The elastic behaviour, as well as the hardening, are considered isotropic. To model the hardening, a Johnson-Cook type relation is adopted. A material vector is included in the model implementation. The failure is modelled with the Cockroft-Latham failure criterion. The material vector allows orienting the reference orientation in any other that the user may need. The model is calibrated for the MAR-M 247 directionally solidified nickel-base superalloy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A mathematical formulation for finite strain elasto plastic consolidation of fully saturated soil media is presented. Strong and weak forms of the boundary-value problem are derived using both the material and spatial descriptions. The algorithmic treatment of finite strain elastoplasticity for the solid phase is based on multiplicative decomposition and is coupled with the algorithm for fluid flow via the Kirchhoff pore water pressure. Balance laws are written for the soil-water mixture following the motion of the soil matrix alone. It is shown that the motion of the fluid phase only affects the Jacobian of the solid phase motion, and therefore can be characterized completely by the motion of the soil matrix. Furthermore, it is shown from energy balance consideration that the effective, or intergranular, stress is the appropriate measure of stress for describing the constitutive response of the soil skeleton since it absorbs all the strain energy generated in the saturated soil-water mixture. Finally, it is shown that the mathematical model is amenable to consistent linearization, and that explicit expressions for the consistent tangent operators can be derived for use in numerical solutions such as those based on the finite element method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta investigación presenta un modelo de material para aleaciones de solidificación direccional que poseen un comportamiento mecánico transversalmente isótropo. Se han realizado una serie de ensayos de tracción sobre probetas cilíndricas a varias velocidades de deformación y a varias temperaturas sobre la superaleación de base níquel de solidificación direccional MAR-M 247 con objeto de conocer su comportamiento mecánico. Los ensayos se realizaron sobre probetas cilíndricas cuya dirección longitudinal forma 0º y 90º con la de la orientación de crecimiento de los granos. Para representar el comportamiento plástico anisótropo se ha formulado una función de plastificación de forma no cuadrática basada en la transformación lineal de tensores. Con el propósito de simplificar en todo lo posible el modelo se ha considerado un endurecimiento isótropo. Para probar la validez del modelo propuesto se ha implementado el mismo como modelo de material definido por el usuario en el código no lineal de elementos finitos LS-DYNA. In this research a material model for directionally solidified alloys with transversely isotropic mechanic behavior is presented. In order to characterize the mechanical behavior of the Mar-M 247 directionally solidified nickel based superalloy, tensile tests of axisymmetric smooth specimens were performed at various strain rates and temperatures. The specimens were machined making sure that the longitudinal axis of them was forming 0º and 90º with the grain growth orientation. To represent the plastic flow, a non-quadratic anisotropic function based on linear transformation of tensors has been formulated. For the sake of simplicity isotropic strain hardening of the material has been considered. To prove the validity of the model, a material subroutine has been implemented in LS-DYNA non-linear finite element code as a user defined material model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe a new promising procedure to model hyperelastic materials from given stress-strain data. The main advantage of the proposed method is that the user does not need to have a relevant knowledge of hyperelasticity, large strains or hyperelastic constitutive modelling. The engineer simply has to prescribe some stress strain experimental data (whether isotropic or anisotropic) in also user prescribed stress and strain measures and the model almost exactly replicates the experimental data. The procedure is based on the piece-wise splines model by Sussman and Bathe and may be easily generalized to transversely isotropic and orthotropic materials. The model is also amenable of efficient finite element implementation. In this paper we briefly describe the general procedure, addressing the advantages and limitations. We give predictions for arbitrary ?experimental data? and also give predictions for actual experiments of the behaviour of living soft tissues. The model may be also implemented in a general purpose finite element program. Since the obtained strain energy functions are analytic piece-wise functions, the constitutive tangent may be readily derived in order to be used for implicit static problems, where the equilibrium iterations must be performed and the material tangent is needed in order to preserve the quadratic rate of convergence of Newton procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Swift heavy ion irradiation (ions with mass heavier than 15 and energy exceeding MeV/amu) transfer their energy mainly to the electronic system with small momentum transfer per collision. Therefore, they produce linear regions (columnar nano-tracks) around the straight ion trajectory, with marked modifications with respect to the virgin material, e.g., phase transition, amorphization, compaction, changes in physical or chemical properties. In the case of crystalline materials the most distinctive feature of swift heavy ion irradiation is the production of amorphous tracks embedded in the crystal. Lithium niobate is a relevant optical material that presents birefringence due to its anysotropic trigonal structure. The amorphous phase is certainly isotropic. In addition, its refractive index exhibits high contrast with those of the crystalline phase. This allows one to fabricate waveguides by swift ion irradiation with important technological relevance. From the mechanical point of view, the inclusion of an amorphous nano-track (with a density 15% lower than that of the crystal) leads to the generation of important stress/strain fields around the track. Eventually these fields are the origin of crack formation with fatal consequences for the integrity of the samples and the viability of the method for nano-track formation. For certain crystal cuts (X and Y), these fields are clearly anisotropic due to the crystal anisotropy. We have used finite element methods to calculate the stress/strain fields that appear around the ion- generated amorphous nano-tracks for a variety of ion energies and doses. A very remarkable feature for X cut-samples is that the maximum shear stress appears on preferential planes that form +/-45º with respect to the crystallographic planes. This leads to the generation of oriented surface cracks when the dose increases. The growth of the cracks along the anisotropic crystal has been studied by means of novel extended finite element methods, which include cracks as discontinuities. In this way we can study how the length and depth of a crack evolves as function of the ion dose. In this work we will show how the simulations compare with experiments and their application in materials modification by ion irradiation.