952 resultados para Thermal phase transition
Resumo:
One of the interesting consequences of Einstein's General Theory of Relativity is the black hole solutions. Until the observation made by Hawking in 1970s, it was believed that black holes are perfectly black. The General Theory of Relativity says that black holes are objects which absorb both matter and radiation crossing the event horizon. The event horizon is a surface through which even light is not able to escape. It acts as a one sided membrane that allows the passage of particles only in one direction i.e. towards the center of black holes. All the particles that are absorbed by black hole increases the mass of the black hole and thus the size of event horizon also increases. Hawking showed in 1970s that when applying quantum mechanical laws to black holes they are not perfectly black but they can emit radiation. Thus the black hole can have temperature known as Hawking temperature. In the thesis we have studied some aspects of black holes in f(R) theory of gravity and Einstein's General Theory of Relativity. The scattering of scalar field in this background space time studied in the first chapter shows that the extended black hole will scatter scalar waves and have a scattering cross section and applying tunneling mechanism we have obtained the Hawking temperature of this black hole. In the following chapter we have investigated the quasinormal properties of the extended black hole. We have studied the electromagnetic and scalar perturbations in this space-time and find that the black hole frequencies are complex and show exponential damping indicating the black hole is stable against the perturbations. In the present study we show that not only the black holes exist in modified gravities but also they have similar properties of black hole space times in General Theory of Relativity. 2 + 1 black holes or three dimensional black holes are simplified examples of more complicated four dimensional black holes. Thus these models of black holes are known as toy models of black holes in four dimensional black holes in General theory of Relativity. We have studied some properties of these types of black holes in Einstein model (General Theory of Relativity). A three dimensional black hole known as MSW is taken for our study. The thermodynamics and spectroscopy of MSW black hole are studied and obtained the area spectrum which is equispaced and different thermo dynamical properties are studied. The Dirac perturbation of this three dimensional black hole is studied and the resulting quasinormal spectrum of this three dimensional black hole is obtained. The different quasinormal frequencies are tabulated in tables and these values show an exponential damping of oscillations indicating the black hole is stable against the mass less Dirac perturbation. In General Theory of Relativity almost all solutions contain singularities. The cosmological solution and different black hole solutions of Einstein's field equation contain singularities. The regular black hole solutions are those which are solutions of Einstein's equation and have no singularity at the origin. These solutions possess event horizon but have no central singularity. Such a solution was first put forward by Bardeen. Hayward proposed a similar regular black hole solution. We have studied the thermodynamics and spectroscopy of Hay-ward regular black holes. We have also obtained the different thermodynamic properties and the area spectrum. The area spectrum is a function of the horizon radius. The entropy-heat capacity curve has a discontinuity at some value of entropy showing a phase transition.
Resumo:
The present thesis is a contribution to the study of laser-solid interaction. Despite the numerous applications resulting from the recent use of laser technology, there is still a lack of satisfactory answers to theoretical questions regarding the mechanism leading to the structural changes induced by femtosecond lasers in materials. We provide here theoretical approaches for the description of the structural response of different solids (cerium, samarium sulfide, bismuth and germanium) to femtosecond laser excitation. Particular interest is given to the description of the effects of the laser pulse on the electronic systems and changes of the potential energy surface for the ions. Although the general approach of laser-excited solids remains the same, the potential energy surface which drives the structural changes is calculated with different theoretical models for each material. This is due to the difference of the electronic properties of the studied systems. We use the Falicov model combined with an hydrodynamic method to study photoinduced phase changes in cerium. The local density approximation (LDA) together with the Hubbard-type Hamiltonian (LDA+U) in the framework of density functional theory (DFT) is used to describe the structural properties of samarium sulfide. We parametrize the time-dependent potential energy surface (calculated using DFT+ LDA) of bismuth on which we perform quantum dynamical simulations to study the experimentally observed amplitude collapse and revival of coherent $A_{1g}$ phonons. On the basis of a time-dependent potential energy surface calculated from a non-orthogonal tight binding Hamiltonian, we perform molecular dynamics simulation to analyze the time evolution (coherent phonons, ultrafast nonthermal melting) of germanium under laser excitation. The thermodynamic equilibrium properties of germanium are also reported. With the obtained results we are able to give many clarifications and interpretations of experimental results and also make predictions.
Resumo:
We have applied a combination of spectroscopic and diffraction methods to study the adduct formed between squaric acid and bypridine, which has been postulated to exhibit proton transfer associated with a single-crystal to single-crystal phase transition at ca. 450 K. A combination of X-ray single-crystal and very-high flux powder neutron diffraction data confirmed that a proton does transfer from the acid to the base in the high-temperature form. Powder X-ray diffraction measurements demonstrated that the transition was reversible but that a significant kinetic energy barrier must be overcome to revert to the original structure. Computational modeling is consistent with these results. Modeling also revealed that, while the proton transfer event would be strongly discouraged in the gas phase, it occurs in the solid state due to the increase in charge state of the molecular ions and their arrangement inside the lattice. The color change is attributed to a narrowing of the squaric acid to bipyridine charge-transfer energy gap. Finally, evidence for the possible existence of two further phases at high pressure is also presented.
Resumo:
The annual and interannual variability of idealized, linear, equatorial waves in the lower stratosphere is investigated using the temperature and velocity fields from the ECMWF 15-year re-analysis dataset. Peak Kelvin wave activity occurs during solstice seasons at 100 hPa, during December-February at 70 hPa and in the easterly to westerly quasi-biennial oscillation (QBO) phase transition at 50 hPa. Peak Rossby-gravity wave activity occurs during equinox seasons at 100 hPa, during June-August/September-November at 70 hPa and in the westerly to easterly QBO phase transition at 50 hPa. Although neglect of wind shear means that the results for inertio-gravity waves are likely to be less accurate, they are still qualitatively reasonable and an annual cycle is observed in these waves at 100 hPa and 70 hPa. Inertio-gravity waves with n = 1 are correlated with the QBO at 50 hPa, but the eastward inertio-gravity n = 0 wave is not, due to its very fast vertical group velocity in all background winds. The relative importance of different wave types in driving the QBO at 50 hPa is also discussed. The strongest acceleration appears to be provided by the Kelvin wave while the acceleration provided by the Rossby-gravity wave is negligible. Of the higher-frequency waves, the westward inertio-gravity n = 1 wave appears able to contribute more to the acceleration of the 50 hPa mean zonal wind than the eastward inertio-gravity n = 1 wave.
Resumo:
The pharmaceutical material chlorothiazide (6-chloro-4H-1,2,4-benzothiadiazine-7-sulfonamide 1,1-dioxide) has been studied under high-pressure conditions using single-crystal and powder X-ray diffraction. An isosymmetric phase transition to a second polymorph occurs at 4.4 GPa. An analysis of the structural changes that occur during this phase transition has been performed.
Resumo:
Objectives: Myostatin, a member of the transforming growth factor-beta (TGF-beta) family, plays a key role in skeletal muscle myogenesis by limiting hyperplastic and hypertrophic muscle growth. In cardiac muscle, myostatin has been shown to limit agonist-induced cardiac hypertrophic growth. However, its role in cardiac hyperplastic growth remains undetermined. The aim of this study was to characterise the expression of myostatin in developing myocardium, determine its effect on cardiomyocyte proliferation, and explore the signalling mechanisms affected by myostatin in dividing cardiomyocytes. Methods: We used quantitative PCR and Western blotting to study the expression of myostatin in cardiomyocytes isolated from rat myocardium at different developmental ages. We. determined the effect of recombinant myostatin on proliferation and cell viability in dividing cardiomyocytes in culture. We analysed myostatin's effect on cardiomyocyte cell cycle progression by flow cytometry and used Western blotting to explore the signalling mechanisms involved. Results: Myostatin is expressed differentially in cardiomyocytes during cardiac development such that increasing expression correlated with a low cardiomyocyte proliferation index. Proliferating foetal cardiomyocytes, from embryos at 18 days of gestation, expressed low levels of myostatin mRNA and protein, whereas isolated cardiomyocytes from postnatal day 10 hearts, wherein the majority of cardiomyocytes have lost their ability to proliferate, displayed a 6-fold increase in myostatin expression. Our in vitro studies demonstrated that myostatin inhibited proliferation of dividing foetal and neonatal cardiomyocytes. Flow cytometric analysis showed that this inhibition occurs mainly via a block in the G1-S phase transition of the cardiomyocyte cell cycle. Western blot analysis showed that part of the mechanism underpinning the inhibition of cardiomyocyte proliferation by myostatin involves phosphorylation of SMAD2 and altered expressions of the cell cycle proteins p21 and CDK2. Conclusions: We conclude that myostatin is an inhibitor of cardiomyocyte proliferation with the potential to limit cardiomyocyte hyperplastic growth by altering cardiac cell cycle progression. (c) 2007 European Society of Cardiology. Published by Elsevier B.V. All fights reserved.
Resumo:
Growth of the post- natal mammalian heart occurs primarily by cardiac myocyte hypertrophy. Previously, we and others have shown that a partial re- activation of the cell cycle machinery occurs in myocytes undergoing hypertrophy such that cells progress through the G(1)/ S transition. In this study, we have examined the regulation of the E2F family of transcription factors that are crucial for the G(1)/ S phase transition during normal cardiac development and the development of myocyte hypertrophy in the rat. Thus, mRNA and protein levels of E2F- 1, 3, and 4 and DP- 1 and DP- 2 were down- regulated during development to undetectable levels in adult myocytes. Interestingly, E2F- 5 protein levels were substantially up- regulated during development. In contrast, an induction of E2F- 1, 3, and 4 and the DP- 1 protein was observed during the development of myocyte hypertrophy in neonatal myocytes treated with serum or phenylephrine, whereas the protein levels of E2F- 5 were decreased with serum stimulation. E2F activity, as measured by a cyclin E promoter luciferase assay and E2F- DNA binding activity, increased significantly during the development of hypertrophy with serum and phenylephrine compared with non- stimulated cells. Inhibiting E2F activity with a specific peptide that blocks E2F- DP heterodimerization prevented the induction of hypertrophic markers ( atrial natriuretic factor and brain natriuretic peptide) in response to serum and phenylephrine, reduced the increase in myocyte size, and inhibited protein synthesis in stimulated cells. Thus, we have shown that the inhibition of E2F function prevents the development of hypertrophy. Targeting E2F function might be a useful approach for treating diseases that cause pathophysiological hypertrophic growth.
Resumo:
We study the effects of hydrostatic pressure (P) on aqueous solutions and gels of the block copolymer B20E610 (E, oxyethylene; B, oxybutylene; subscripts, number of repeats), by performing simultaneous small angle neutron scattering/pressure experiments. Micellar cubic gels were studied for 9.5 and 4.5 wt% B20E610 at T = 20-80 and 35-55 degrees C, respectively, while micellar isotropic solutions where Studied for 4.5 wt% B20E610 at T > 55 degrees C. We observed that the interplanar distance d(110) (cubic unit cell parameter a = root 2d(110)) decreases while the correlation length of the Cubic order (delta) increases, upon increasing P at a fixed T for 9.5 wt% B20E610. The construction of master Curves for d(110) and delta corresponding to 9.5 wt% B20E610 proved the correlation between changes in T and P. Neither d(110) and delta nor the cubic-isotropic phase transition temperature was affected by the applied pressure for 4.5 wt% B20E610. The dramatic contrast between the pressure-induced behavior observed for 9.5 and 4.5 wt% B20E610 suggests that pressure induced effects might be more effectively transmitted through samples that present wider domains of cubic structure order (9.5 wt% compared to 4.5 wt% B20E610).
Resumo:
We report on the capillary flow behaviour of thermotropic liquid crystal mixtures containing 4-n-octyl-4'-cyanobiphenyl (8CB) and 4-n-pentyl-4'-cyanobiphenyl (5CB). The liquid crystal mixtures are studied in the Nematic (N) and Smectic (SA) phases at room temperature. Polarised optical microscopy (POM), rheology and simultaneous X-ray diffraction (XRD)/capillary flow experiments are performed to characterise the system. Polarised optical microscopy reveals a dramatic change in optical texture when the 5CB content is increased from 20 to 30% in the mixtures. X-ray diffraction results show that the system goes through a SA-N phase transition, such that the mixtures are smectic for 10-20% 5CB and nematic for 30-90% 5CB. Smectic mixtures flow with the layers aligned along the flow direction (mesogens perpendicular to flow) while nematic mixtures flow with the mesogens aligned in the flow direction. Simultaneous XRD/shear flow experiments show that the SA-N transition is independent of the flow rate in the range 1-6 ml min-1. The correlation length of the liquid crystal order decreases with increasing 5CB content. Rheology is used to prove that the correlation length behaviour is related to a reduction in the viscosity of the mixture.
Resumo:
Hierarchical ordering in a side group liquid crystal block copolymer is investigated by differential scanning calorimetry, polarized optical microscopy, small-angle X-ray and neutron scattering (SAXS and SANS) and transmission electron microscopy (TEM). A series of block copolymers with a range of compositions was prepared by atom transfer radical polymerization, comprising a polystyrene block and a poly(methyl methacrylate) block bearing chiral cholesteryl mesogens. Smectic ordering is observed as well as microphase separation of the block copolymer. Lamellar structures were observed for far larger volume fractions than for coil-coil copolymers (up to a volume fraction of liquid crystal block, f(LC) = 0.8). A sample with f(LC) = 0.86 exhibited a hexagonal-packed cylinder morphology, as confirmed by SAXS and TEM. The matrix comprised the liquid crystal block, with the mesogens forming smectic layers. For the liquid crystal homopolymer and samples with high f(LC), a smectic-smectic phase transition was observed below the clearing point. At low temperature, the smectic phase comprises coexisting domains with monolayer S-A,S-1 coexisting with interdigitated S-A,S-d domains. At high temperature a SA,1 phase is observed. This is the only structure observed for samples with lower f(LC). These unprecedented results point to the influence of block copolymer microphase separation on the smectic ordering.
Resumo:
In this paper, we give an overview of our studies by static and time-resolved X-ray diffraction of inverse cubic phases and phase transitions in lipids. In 1, we briefly discuss the lyotropic phase behaviour of lipids, focusing attention on non-lamellar structures, and their geometric/topological relationship to fusion processes in lipid membranes. Possible pathways for transitions between different cubic phases are also outlined. In 2, we discuss the effects of hydrostatic pressure on lipid membranes and lipid phase transitions, and describe how the parameters required to predict the pressure dependence of lipid phase transition temperatures can be conveniently measured. We review some earlier results of inverse bicontinuous cubic phases from our laboratory, showing effects such as pressure-induced formation and swelling. In 3, we describe the technique of pressure-jump synchrotron X-ray diffraction. We present results that have been obtained from the lipid system 1:2 dilauroylphosphatidylcholine/lauric acid for cubic-inverse hexagonal, cubic-cubic and lamellar-cubic transitions. The rate of transition was found to increase with the amplitude of the pressure-jump and with increasing temperature. Evidence for intermediate structures occurring transiently during the transitions was also obtained. In 4, we describe an IDL-based 'AXCESS' software package being developed in our laboratory to permit batch processing and analysis of the large X-ray datasets produced by pressure-jump synchrotron experiments. In 5, we present some recent results on the fluid lamellar-Pn3m cubic phase transition of the single-chain lipid 1-monoelaidin, which we have studied both by pressure-jump and temperature-jump X-ray diffraction. Finally, in 6, we give a few indicators of future directions of this research. We anticipate that the most useful technical advance will be the development of pressure-jump apparatus on the microsecond time-scale, which will involve the use of a stack of piezoelectric pressure actuators. The pressure-jump technique is not restricted to lipid phase transitions, but can be used to study a wide range of soft matter transitions, ranging from protein unfolding and DNA unwinding and transitions, to phase transitions in thermotropic liquid crystals, surfactants and block copolymers.
Resumo:
The positive strand RNA coronavirus, infectious bronchitis virus (IBV), induces a G2/M phase arrest and reduction in the G1 and G1/S phase transition regulator cyclin D1. Quantitative real-time RT-PCR and Western blot analysis demonstrated that cyclin D1 was reduced post-transcriptionally within infected cells independently of the cell-cycle stage at the time of infection. Confocal microscopy revealed that cyclin D1 decreased in IBV-infected cells as infection progressed and inhibition studies indicated that a population of cyclin D1 could be targeted for degradation by a virus mediated pathway. In contrast to the SARS-coronavirus, IBV nucleocapsid protein did not interact with cyclin D1. (c) 2007 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
This paper describes time-resolved x-ray diffraction data monitoring the transformation of one inverse bicontinuous cubic mesophase into another, in a hydrated lipid system. The first section of the paper describes a mechanism for the transformation that conserves the topology of the bilayer, based on the work of Charvolin and Sadoc, Fogden and Hyde, and Benedicto and O'Brien in this area. We show a pictorial representation of this mechanism, in terms of both the water channels and the lipid bilayer. The second section describes the experimental results obtained. The system under investigation was 2:1 lauric acid: dilauroylphosphatidylcholine at a hydration of 50% water by weight. A pressure-jump was used to induce a phase transition from the gyroid (Q(II)(G)) to the diamond (Q(II)(D)) bicontinuous cubic mesophase, which was monitored by time-resolved x-ray diffraction. The lattice parameter of both mesophases was found to decrease slightly throughout the transformation, but at the stage where the Q(II)(D) phase first appeared, the ratio of lattice parameters of the two phases was found to be approximately constant for all pressure-jump experiments. The value is consistent with a topology-preserving mechanism. However, the polydomain nature of our sample prevents us from confirming that the specific pathway is that described in the first section of the paper. Our data also reveal signals from two different intermediate structures, one of which we have identified as the inverse hexagonal (H-II) mesophase. We suggest that it plays a role in the transfer of water during the transformation. The rate of the phase transition was found to increase with both temperature and pressure-jump amplitude, and its time scale varied from the order of seconds to minutes, depending on the conditions employed.
Resumo:
Two novel, monomeric heteroleptic tin(II) derivatives, [Sn{2-[(Me3Si)2C]C5H4N}R] [R = C6H2Pri3-2,4,6 1 or CH(PPh2)2 2], have been prepared, characterised by multinuclear NMR spectroscopies and their molecular structures determined by single crystal X-ray diffraction. Both compounds were prepared from the corresponding heteroleptic tin(II) chloro-analogue, [Sn{2-[(Me3Si)2C]C5H4N}Cl], and thus demonstrate the utility of this compound as a precursor to further examples of heteroleptic tin(II) derivatives: such compounds are often unstable with respect to ligand redistribution. In each case, the central tin(II) is three-co-ordinate. Crystals of trimeric [{Sn(C6H2Pri3-2,4,6)2}3] 3 were found to undergo a solid state phase transition, which may be ascribed to ordering of the ligand isopropyl groups. At 220 K the unit cell is orthorhombic, space group Pna21, compared with monoclinic, space group P21/c, for the same crystals at 298 K, in which there is an effective tripling of the now b (originally c) axis. This result illustrates the extreme crowding generated by this bulky aryl ligand.
Resumo:
The influence of cross-linking on the phase behaviour of a series of side-chain liquid crystalline elastomers has been studied. For samples cross-linked in the temperature range corresponding to the nematic phase, the phase transition was shifted compared to that observed when an identical sample was cross-linked in the isotropic phase. This shift represented a stabilisation of the nematic phase in the former case, in line with theoretical expectations. By utilising a novel, slow cross-linking method, which allows the polymer backbone to take up an equilibrium conformation prior to network formation, it proved possible to monitor the shifts in phase transition temperature as a function of the length of the methylene chain coupling the mesogenic units to the polymer backbone. The results obtained are related to the backbone anisotropy and indicate that the level of orientational order of the polymer in the nematic phase backbone increases with a reduction in the length of the coupling chain.