945 resultados para The selfish gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dld gene product, known as dihydrolipoamide dehydrogenase or the E3 component, catalyzes the oxidation of dihydrolipoyl moieties of four mitochondrial multienzyme complexes: pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, branched-chain α-ketoacid dehydrogenase, and the glycine cleavage system. Deficiency of E3 activity in humans results in various degrees of neurological dysfunction and organic acidosis caused by accumulation of branched-chain amino acids and lactic acid. In this study, we have introduced a null mutation into the murine Dld gene (Dldtm1mjp). The heterozygous animals are shown to have approximately half of wild-type activity levels for E3 and all affected multienzyme complexes but are phenotypically normal. In contrast, the Dld−/− class dies prenatally with apparent developmental delay at 7.5 days postcoitum followed by resorption by 9.5 days postcoitum. The Dld−/− embryos cease to develop at a time shortly after implantation into the uterine wall when most of the embryos have begun to gastrulate. This null phenotype provides in vivo evidence for the requirement of a mitochondrial oxidative pathway during the perigastrulation period. Furthermore, the early prenatal lethal condition of the complete deficiency state may explain the low incidence of detectable cases of E3 deficiency in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipoproteins are emulsion particles that consist of lipids and apolipoproteins. Their natural function is to transport lipids and/or cholesterol to different tissues. We have taken advantage of the hydrophobic interior of these natural emulsions to solubilize DNA. Negatively charged DNA was first complexed with cationic lipids containing a quaternary amine head group. The resulting hydrophobic complex was extracted by chloroform and then incorporated into reconstituted chylomicron remnant particles (≈100 nm in diameter) with an efficiency ≈65%. When injected into the portal vein of mice, there were ≈5 ng of a transgene product (luciferase) produced per mg of liver protein per 100 μg injected DNA. This level of transgene expression was ≈100-fold higher than that of mice injected with naked DNA. However, such a high expression was not found after tail vein injection. Histochemical examination revealed that a large number of parenchymal cells and other types of cells in the liver expressed the transgene. Gene expression in the liver increased with increasing injected dose, and was nearly saturated with 50 μg DNA. At this dose, the expression was kept at high level in the liver for 2 days and then gradually reduced and almost disappeared by 7 days. However, by additional injection at day 7, gene expression in the liver was completely restored. By injection of plasmid DNA encoding human α1-antitrypsin, significant concentrations of hAAT were detected in the serum of injected animals. This is the first nonviral vector that resembles a natural lipoprotein carrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene(s) encoded within major histocompatibility complex (MHC) act as one of the major genetic elements contributing to the susceptibility of murine systemic lupus erythematosus (SLE). We have recently demonstrated that lupus susceptibility is more closely linked to the I-E− H-2b haplotype than to the I-E+ H-2d haplotype in lupus-prone BXSB and (NZB × BXSB)F1 hybrid mice. To investigate whether the reduced susceptibility to SLE in H-2d mice is related to the expression of the MHC class II Ea gene (absent in H-2b mice), we determined the possible role of the Ea gene as a lupus protective gene in mice. Our results showed that (i) the development of SLE was almost completely prevented in BXSB (H-2b) mice expressing two copies of the Ead transgene at the homozygous level as well as in BXSB H-2k (I-E+) congenic mice as for H-2d BXSB mice, and (ii) the expression of two functional Ea (transgenic and endogenous) genes in either H-2d/b (NZB × BXSB)F1 or H-2k/b (MRL × BXSB)F1 mice provided protection from SLE at levels comparable to those conferred by the H-2d/d or H-2k/k haplotype. In addition, the level of the Ea gene-mediated protection appeared to be dependent on the genetic susceptibility to SLE in individual lupus-prone mice. Our results indicate that the reduced susceptibility associated with the I-E+ H-2d and H-2k haplotypes (versus the I-E− H-2b haplotype) is largely, if not all, contributed by the apparent autoimmune suppressive effect of the Ea gene, independently of the expression of the I-A or other MHC-linked genes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The XPD/ERCC2/Rad3 gene is required for excision repair of UV-damaged DNA and is an important component of nucleotide excision repair. Mutations in the XPD gene generate the cancer-prone syndrome, xeroderma pigmentosum, Cockayne’s syndrome, and trichothiodystrophy. XPD has a 5′- to 3′-helicase activity and is a component of the TFIIH transcription factor, which is essential for RNA polymerase II elongation. We present here the characterization of the Drosophila melanogaster XPD gene (DmXPD). DmXPD encodes a product that is highly related to its human homologue. The DmXPD protein is ubiquitous during development. In embryos at the syncytial blastoderm stage, DmXPD is cytoplasmic. At the onset of transcription in somatic cells and during gastrulation in germ cells, DmXPD moves to the nuclei. Distribution analysis in polytene chromosomes shows that DmXPD is highly concentrated in the interbands, especially in the highly transcribed regions known as puffs. UV-light irradiation of third-instar larvae induces an increase in the signal intensity and in the number of sites where the DmXPD protein is located in polytene chromosomes, indicating that the DmXPD protein is recruited intensively in the chromosomes as a response to DNA damage. This is the first time that the response to DNA damage by UV-light irradiation can be visualized directly on the chromosomes using one of the TFIIH components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recessive mouse mutant Mpv17 is characterized by the development of early-onset glomerulosclerosis, concomitant hypertension, and structural alterations of the inner ear. The primary cause of the disease is the loss of function of the Mpv17 protein, a peroxisomal gene product involved in reactive oxygen metabolism. In our search of a common mediator exerting effects on several aspects of the phenotype, we discovered that the absence of the Mpv17 gene product causes a strong increase in matrix metalloproteinase 2 (MMP-2) expression. This was seen in the kidney and cochlea of Mpv17-negative mice as well as in tissue culture cells derived from these animals. When these cells were transfected with the human Mpv17 homolog, an inverse causal relationship between Mpv17 and MMP-2 expression was established. These results indicate that the Mpv17 protein plays a crucial role in the regulation of MMP-2 and suggest that enhanced MMP-2 expression might mediate the mechanisms leading to glomerulosclerosis, inner ear disease, and hypertension in this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular aging-associated transcriptional repressor that we previously named as Orpheus was identical to Oct-1, a member of the POU domain family. Oct-1 represses the collagenase gene, one of the cellular aging-associated genes, by interacting with an AT-rich cis-element in the upstream of the gene in preimmortalized cells at earlier population-doubling levels and in immortalized cells. In these stages of cells, considerable fractions of the Oct-1 protein were prominently localized in the nuclear periphery and colocalized with lamin B. During the cellular aging process, however, this subspecies of Oct-1 disappeared from the nuclear periphery. The cells lacking the nuclear peripheral Oct-1 protein exhibited strong collagenase expression and carried typical senescent morphologies. Concomitantly, the binding activity and the amount of nuclear Oct-1 protein were reduced in the aging process and resumed after immortalization. However, the whole cellular amounts of Oct-1 protein were not significantly changed during either process. Thus, the cellular aging-associated genes including the collagenase gene seemed to be derepressed by the dissociation of Oct-1 protein from the nuclear peripheral structure. Oct-1 may form a transcriptional repressive apparatus by anchoring nuclear matrix attachment regions onto the nuclear lamina in the nuclear periphery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The molecular genetic mechanism of gene conversion in higher eukaryotes remains unknown. We find it of considerable interest to determine when during spermatogenesis gene conversion occurs. We have therefore purified pachytene spermatocytes and haploid spermatocytes from adult mice and analyzed these fractions for the presence of gene conversion products resulting from the transfer between the major histocompatibility complex class II genes Ebd and Abk in a polymerase chain reaction assay. We have further isolated spermatogenic cells from prepubescent mice and analyzed them for the presence of the same gene conversion products. We can detect gene conversion products in testis cells as early as in 8-d-old mice where the only existing spermatogenic cells are spermatogonia. The frequency of gene conversion products remains the same as the cells reach meiosis in 18-d-old mice, and is unchanged after meiosis is completed in haploid spermatocytes. Gene conversion of this specific fragment therefore appears to be a premeiotic event and, consequently, relies on genetic mechanisms other than normal meiotic recombination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5′ untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Twenty-four base pairs of the human antioxidant response element (hARE) are required for high basal transcription of the NAD(P)H:quinone oxidoreductase1 (NQO1) gene and its induction in response to xenobiotics and antioxidants. hARE is a unique cis-element that contains one perfect and one imperfect AP1 element arranged as inverse repeats separated by 3 bp, followed by a “GC” box. We report here that Jun, Fos, Fra, and Nrf nuclear transcription factors bind to the hARE. Overexpression of cDNA derived combinations of the nuclear proteins Jun and Fos or Jun and Fra1 repressed hARE-mediated chloramphenicol acetyltransferase (CAT) gene expression in transfected human hepatoblastoma (Hep-G2) cells. Further experiments suggested that this repression was due to overexpression of c-Fos and Fra1, but not due to Jun proteins. The Jun (c-Jun, Jun-B, and Jun-D) proteins in all the possible combinations were more or less ineffective in repression or upregulation of hARE-mediated gene expression. Interestingly, overexpression of Nrf1 and Nrf2 individually in Hep-G2 and monkey kidney (COS1) cells significantly increased CAT gene expression from reporter plasmid hARE-thymidine kinase-CAT in transfected cells that were inducible by β-naphthoflavone and tert-butyl hydroquinone. These results indicated that hARE-mediated expression of the NQO1 gene and its induction by xenobiotics and antioxidants are mediated by Nrf1 and Nrf2. The hARE-mediated basal expression, however, is repressed by overexpression of c-Fos and Fra1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The locus RTM1 is necessary for restriction of long-distance movement of tobacco etch virus in Arabidopsis thaliana without causing a hypersensitive response or inducing systemic acquired resistance. The RTM1 gene was isolated by map-based cloning. The deduced gene product is similar to the α-chain of the Artocarpus integrifolia lectin, jacalin, and to several proteins that contain multiple repeats of a jacalin-like sequence. These proteins comprise a family with members containing modular organizations of one or more jacalin repeat units and are implicated in defense against viruses, fungi, and insects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the isolation and expression of the Hox gene, Cnox-2, in Hydractinia symbiolongicarpus, a hydrozoan displaying division of labor. We found different patterns of aboral-to-oral Cnox-2 expression among polyp polymorphs, and we show that experimental conversion of one polyp type to another is accompanied by concordant alteration in Cnox-2 expression. Our results are consistent with the suggestion that polyp polymorphism, characteristic of hydractiniid hydroids, arose via evolutionary modification of proportioning of head to body column.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thalassemia is a heritable human anemia caused by a variety of mutations that affect expression of the α- or the β-chain of hemoglobin. The expressivity of the phenotype is likely to be influenced by unlinked modifying genes. Indeed, by using a mouse model of α-thalassemia, we find that its phenotype is strongly influenced by the genetic background in which the α-thalassemia mutation resides [129sv/ev/129sv/ev (severe) or 129sv/ev/C57BL/6 (mild)]. Linkage mapping indicates that the modifying gene is very tightly linked to the β-globin locus (Lod score = 13.3). Furthermore, the severity of the phenotype correlates with the size of β-chain-containing inclusion bodies that accumulate in red blood cells and likely accelerate their destruction. The β-major globin chains encoded by the two strains differ by three amino acids, one of which is a glycine-to-cysteine substitution at position 13. The Cys-13 should be available for interchain disulfide bridging and consequent aggregation between excess β-chains. This normal polymorphic variation between murine β-globin chains could account for the modifying action of the unlinked β-globin locus. Here, the variation in severity of the phenotype would not depend on a change in the ratio between α- and β-chains but on the chemical nature of the normal β-chain, which is in excess. This work also indicates that modifying genes can be normal variants that—absent an apparent physiologic rationale—may be difficult to identify on the basis of structure alone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, we established that natural killer (NK) cells from C57BL/6 (B6), but not BALB/c, mice lysed Chinese hamster ovary (CHO) cells, and we mapped the locus that determines this differential CHO-killing capacity to the NK gene complex on chromosome 6. The localization of Chok in the NK gene complex suggested that it may encode either an activating or an inhibitory receptor. Here, results from a lectin-facilitated lysis assay predicted that Chok is an activating B6 NK receptor. Therefore, we immunized BALB/c mice with NK cells from BALB.B6–Cmv1r congenic mice and generated a mAb, designated 4E4, that blocked B6-mediated CHO lysis. mAb 4E4 also redirected lysis of Daudi targets, indicating its reactivity with an activating NK cell receptor. Furthermore, only the 4E4+ B6 NK cell subset mediated CHO killing, and this lysis was abrogated by preincubation with mAb 4E4. Flow cytometric analysis indicated that mAb 4E4 specifically reacts with Ly-49D but not Ly-49A, B, C, E, G, H, or I transfectants. Finally, gene transfer of Ly-49DB6 into BALB/c NK cells conferred cytotoxic capacity against CHO cells, thus establishing that the Ly-49D receptor is sufficient to activate NK cells to lyse this target. Hence, Ly-49D is the Chok gene product and is a mouse NK cell receptor capable of directly triggering natural killing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in the ATRX gene on the human X chromosome cause X-linked α-thalassemia and mental retardation. XY patients with deletions or mutations in this gene display varying degrees of sex reversal, implicating ATRX in the development of the human testis. To explore further the role of ATRX in mammalian sex differentiation, the homologous gene was cloned and characterized in a marsupial. Surprisingly, active homologues of ATRX were detected on the marsupial Y as well as the X chromosome. The Y-borne copy (ATRY) displays testis-specific expression. This, as well as the sex reversal of ATRX patients, suggests that ATRY is involved in testis development in marsupials and may represent an ancestral testis-determining mechanism that predated the evolution of SRY as the primary mammalian male sex-determining gene. There is no evidence for a Y-borne ATRX homologue in mouse or human, implying that this gene has been lost in eutherians and its role supplanted by the evolution of SRY from SOX3 as the dominant determiner of male differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with mutations in the thyroid hormone receptor β (TRβ) gene manifest resistance to thyroid hormone (RTH), resulting in a constellation of variable phenotypic abnormalities. To understand the molecular basis underlying the action of mutant TRβ in vivo, we generated mice with a targeted mutation in the TRβ gene (TRβPV; PV, mutant thyroid hormone receptor kindred PV) by using homologous recombination and the Cre/loxP system. Mice expressing a single PVallele showed the typical abnormalities of thyroid function found in heterozygous humans with RTH. Homozygous PV mice exhibit severe dysfunction of the pituitary–thyroid axis, impaired weight gains, and abnormal bone development. This phenotype is distinct from that seen in mice with a null mutation in the TRβ gene. Importantly, we identified abnormal expression patterns of several genes in tissues of TRβPV mice, demonstrating the interference of the mutant TR with the gene regulatory functions of the wild-type TR in vivo. These results show that the actions of mutant and wild-type TRβ in vivo are distinct. This model allows further study of the molecular action of mutant TR in vivo, which could lead to better treatment for RTH patients.