879 resultados para Teaching biological systematics and taxonomy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution sampling from late Pleistocene (last 400 k.y.) sediments of Site 722 (upper 16 m) and Site 724 (upper 70 m), and subsequent inorganic geochemical analysis, has defined the history of productivity in the northwest Arabian Sea. Eolian dust input from the Arabian Peninsula and Somalia is characterized by the record of Ti/Al and Cr/Al. This dust record displays strong precessional periodicity (cycles at 25 k.y.) suggesting the Southwest Monsoon and associated winds play a key role in transporting terrigenous material from the land. High biological productivity results in the accumulation of biogenic CaCO3 and opal in the sediments, the latter having an unexpectedly minor contribution to the total mass flux. Due to dilution of the CaCO3 record by the terrigenous component, the record of biological productivity is best exemplified by Ba. Its record, together with that of other metals recording biological association and redox variability (Cu, Ni, Zn, V, U) clearly identifies the interglacial episodes as being more biologically productive. The striking agreement between Ba and the d18O record in planktonic foraminifers suggests that the supply of nutrients during these periods of high productivity is linked to ocean-wide changes in ocean fertility, and not just local upwelling conditions. High levels of phosphate accumulation in interglacial sediments is attributed to both diagenetic phosphorite formation and biogenic skeletal debris. This study provides a detailed record of productivity variation in the northwest Arabian Sea during the late Pleistocene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrations of dissolved (<0.2 µm) Fe (DFe) in the Arctic shelf seas and in the surface waters of the central Arctic Ocean are presented. In the Barents and Kara seas, near-surface DFe minima indicate depletion of DFe by phytoplankton growth. Below the surface, lower DFe concentrations in the Kara Sea (~0.4-0.6 nM) than in the Barents Sea (~0.6-0.8 nM) likely reflect scavenging removal or biological depletion of DFe. Very high DFe concentrations (>10 nM) in the bottom waters of the Laptev Sea shelf may be attributed to either sediment resuspension, sinking of brine or regeneration of DFe in the lower layers. A significant correlation (R2 = 0.60) between salinity and DFe is observed. Using d18O, salinity, nutrients and total alkalinity data, the main source for the high (>2 nM) DFe concentrations in the Amundsen and Makarov Basins is identified as (Eurasian) river water, transported with the Transpolar Drift (TPD). On the North American side of the TPD, the DFe concentrations are low (<0.8 nM) and variations are determined by the effects of sea-ice meltwater, biological depletion and remineralization and scavenging in halocline waters from the shelf. This distribution pattern of DFe is also supported by the ratio between unfiltered and dissolved Fe (high (>4) above the shelf and low (<4) off the shelf).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The continuously influence of human impacts on the seafloor and benthic habitats demands the knowledge of clearly defined habitats to assess recent conditions and to monitor future changes. In this study, a benthic habitat dominated by sorted bedforms was mapped in 2010 using biological, sedimentological and acoustic data. This approach reveals the first interdisciplinary analysis of macrofauna communities in sorted bedforms in the German Bight. The study area covered 4 km², and was located ca. 3.5 km west of island of Sylt. Sorted bedforms formed as sinuous depressions with an east west orientation. Inside these depressions coarse sand covers the seafloor, while outside predominantly fine to medium sand was found. Based on the hydroacoustic data, two seafloor classes were identified. Acoustic class 1 was linked to coarse sand (type A) found inside these sorted bedforms, whereas acoustic class 2 was related to mainly fine to medium sands (type B). The two acoustic classes and sediment types corresponded with the macrofauna communities 1 and 2. The Aoinides paucibranchiata-Goniadella bobretzkii community on coarse sand and the Spiophanes bombyx - Magelona johnstonii community on fine sand. A transitional community 3 (Scoloplos armiger - Ophelia community), with species found in communities 1 and 2, could not be detected by hydroacoustic methods. This study showed the limits of the used acoustic methods, which were unable to detect insignificant differences in the fauna composition of sandy areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals pollution in marine environments has caused great damage to marine biological and ecological systems. Heavy metals accumulate in marine creatures, after which they are delivered to higher trophic levels of marine organisms through the marine food chain, which causes serious harm to marine biological systems and human health. Additionally, excess carbon dioxide in the atmosphere has caused ocean acidification. Indeed, about one third of the CO2 released into the atmosphere by anthropogenic activities since the beginning of the industrial revolution has been absorbed by the world's oceans, which play a key role in moderating climate change. Modeling has shown that, if current trends in CO2 emissions continue, the average pH of the ocean will reach 7.8 by the end of this century, corresponding to 0.5 units below the pre-industrial level, or a three-fold increase in H+ concentration. The ocean pH has not been at this level for several millions of years. Additionally, these changes are occurring at speeds 100 times greater than ever previously observed. As a result, several marine species, communities and ecosystems might not have time to acclimate or adapt to these fast changes in ocean chemistry. In addition, decreasing ocean pH has the potential to seriously affect the growth, development and reproduction reproductive processes of marine organisms, as well as threaten normal development of the marine ecosystem. Copepods are an important part of the meiofauna that play an important role in the marine ecosystem. Pollution of the marine environment can influence their growth and development, as well as the ecological processes they are involved in. Accordingly, there is important scientific value to investigation of the response of copepods to ocean acidification and heavy metals pollution. In the present study, we evaluated the effects of simulated future ocean acidification and the toxicological interaction between ocean acidity and heavy metals of Cu and Cd on T. japonicus. To accomplish this, harpacticoids were exposed to Cu and Cd concentration gradient seawater that had been equilibrated with CO2 and air to reach pH 8.0, 7.7, 7.3 and 6.5 for 96 h. Survival was not significantly suppressed under single sea water acidification, and the final survival rates were greater than 93% in both the experimental groups and the controls. The toxicity of Cu to T. japonicus was significantly affected by sea water acidification, with the 96h LC50 decreasing by nearly threefold from 1.98 to 0.64 mg/L with decreasing pH. The 96 h LC50 of Cd decreased with decreasing pH, but there was no significant difference in mortality among pH treatments. The results of the present study demonstrated that the predicted future ocean acidification has the potential to negatively affect survival of T. japonicus by exacerbating the toxicity of Cu. The calculated safe concentrations of Cu were 11.9 (pH 7.7) and 10.5 (pH 7.3) µg/L, which were below the class I value and very close to the class II level of the China National Quality Standard for Sea Water. Overall, these results indicate that the Chinese coastal sea will face a

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chromatographic fractionation of the cytotoxic n-hexane extract of Hopea odorata Roxb. leaves led to the isolation of eight lupane triterpenes, which constitutes the first report of lupane-type triterpenes from this plant source. Furthermore, 3,30-dioxolup-20(29)-en-28-oic acid (6) was isolated for the first time from a natural source. Their structures were determined on the basis of spectroscopic methods, including 2D NMR analysis, and by comparison of their spectral data with literature values. Complete NMR assignments of the 1H and 13C NMR data were achieved for all compounds. Finally, the cytotoxic activities of the isolated compounds against four human cell lines (PC3, MDA-MB-231, HT-29 and HCT116) was also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coastal upwelling system off the coast of Peru is characterized by high biological activity and a pronounced subsurface oxygen minimum zone, as well as associated emissions of atmospheric trace gases such as N2O, CH4 and CO2. From 3 to 23 December 2012, R/V Meteor (M91) cruise took place in the Peruvian upwelling system between 4.59 and 15.4°S, and 82.0 to 77.5°W. During M91 we investigated the composition of the sea-surface microlayer (SML), the oceanic uppermost boundary directly subject to high solar radiation, often enriched in specific organic compounds of biological origin like chromophoric dissolved organic matter (CDOM) and marine gels. In the SML, the continuous photochemical and microbial recycling of organic matter may strongly influence gas exchange between marine systems and the atmosphere. We analyzed SML and underlying water (ULW) samples at 38 stations focusing on CDOM spectral characteristics as indicator of photochemical and microbial alteration processes. CDOM composition was characterized by spectral slope (S) values and excitation-emission matrix fluorescence (EEMs), which allow us to track changes in molecular weight (MW) of DOM, and to determine potential DOM sources and sinks. Spectral slope S varied between 0.012 to 0.043 1 nm-1 and was quite similar between SML and ULW, with no significant differences between the two compartments. Higher S values were observed in the ULW of the southern stations below 15°S. By EEMs, we identified five fluorescent components (F1-5) of the CDOM pool, of which two had excitation/emission characteristics of amino-acid-like fluorophores (F1, F4) and were highly enriched in the SML, with a median ratio SML : ULW of 1.5 for both fluorophores. In the study region, values for CDOM absorption ranged from 0.07 to 1.47 m-1. CDOM was generally highly concentrated in the SML, with a median enrichment with respect to the ULW of 1.2. CDOM composition and changes in spectral slope properties suggested a local microbial release of DOM directly in the SML as a response to light exposure in this extreme environment. In a conceptual model of the sources and modifications of optically active DOM in the SML and underlying seawater (ULW), we describe processes we think may take place (Fig. 1); the production of CDOM of higher MW by microbial release through growth, exudation and lysis in the euphotic zone, includes the identified fluorophores (F1, F2, F3, F4, F5). Specific amino-acid-like fluorophores (F1, F4) accumulate in the SML with respect to the ULW, as photochemistry may enhance microbial CDOM release by (a) photoprotection mechanisms and (b) cell-lysis processes. Microbial and photochemical degradation are potential sinks of the amino-acid-like fluorophores (F1, F4), and potential sources of reworked and more refractory humic-like components (F2, F3, F5). In the highly productive upwelling region along the Peruvian coast, the interplay of microbial and photochemical processes controls the enrichment of amino-acid-like CDOM in the SML. We discuss potential implications for air-sea gas exchange in this area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the potential impact of ocean acidification on ecosystems such as coral reefs, surprisingly, there is very limited field data on the relationships between calcification and seawater carbonate chemistry. In this study, contemporaneous in situ datasets of seawater carbonate chemistry and calcification rates from the high-latitude coral reef of Bermuda over annual timescales provide a framework for investigating the present and future potential impact of rising carbon dioxide (CO2) levels and ocean acidification on coral reef ecosystems in their natural environment. A strong correlation was found between the in situ rates of calcification for the major framework building coral species Diploria labyrinthiformis and the seasonal variability of [CO32-] and aragonite saturation state omega aragonite, rather than other environmental factors such as light and temperature. These field observations provide sufficient data to hypothesize that there is a seasonal "Carbonate Chemistry Coral Reef Ecosystem Feedback" (CREF hypothesis) between the primary components of the reef ecosystem (i.e., scleractinian hard corals and macroalgae) and seawater carbonate chemistry. In early summer, strong net autotrophy from benthic components of the reef system enhance [CO32-] and omega aragonite conditions, and rates of coral calcification due to the photosynthetic uptake of CO2. In late summer, rates of coral calcification are suppressed by release of CO2 from reef metabolism during a period of strong net heterotrophy. It is likely that this seasonal CREF mechanism is present in other tropical reefs although attenuated compared to high-latitude reefs such as Bermuda. Due to lower annual mean surface seawater [CO32-] and omega aragonite in Bermuda compared to tropical regions, we anticipate that Bermuda corals will experience seasonal periods of zero net calcification within the next decade at [CO32-] and omega aragonite thresholds of ~184 micro moles kg-1 and 2.65. However, net autotrophy of the reef during winter and spring (as part of the CREF hypothesis) may delay the onset of zero NEC or decalcification going forward by enhancing [CO32-] and omega aragonite. The Bermuda coral reef is one of the first responders to the negative impacts of ocean acidification, and we estimate that calcification rates for D. labyrinthiformis have declined by >50% compared to pre-industrial times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of aortic wall, both healthy and pathological, are needed in order to develop and improve diagnostic and interventional criteria, and for the development of mechanical models to assess arterial integrity. This study focuses on the mechanical behaviour and rupture conditions of the human ascending aorta and its relationship with age and pathologies. Fresh ascending aortic specimens harvested from 23 healthy donors, 12 patients with bicuspid aortic valve (BAV) and 14 with aneurysm were tensile-tested in vitro under physiological conditions. Tensile strength, stretch at failure and elbow stress were measured. The obtained results showed that age causes a major reduction in the mechanical parameters of healthy ascending aortic tissue, and that no significant differences are found between the mechanical strength of aneurysmal or BAV aortic specimens and the corresponding age-matched control group. The physiological level of the stress in the circumferential direction was also computed to assess the physiological operation range of healthy and diseased ascending aortas. The mean physiological wall stress acting on pathologic aortas was found to be far from rupture, with factors of safety (defined as the ratio of tensile strength to the mean wall stress) larger than six. In contrast, the physiological operation of pathologic vessels lays in the stiff part of the response curve, losing part of its function of damping the pressure waves from the heart.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The “Innovatio Educativa Tertio Millennio” group has been 10 years developing educational innovation techniques, actually has reached the level of teaching on the technical teachers has developed, and share them with other groups, that can implement them in their teaching activities. UNESCO Chair of Mining and Industrial Heritage has been years working on heritage, and on the one hand teaching in conservation and maintenance of heritage, and on the other doing raise awareness of the meaning of heritage, the social value and as must be managed effectively. Recently these two groups work together, thus is spreading in a much more effective manner the concepts of heritage, its meaning, its value, and how to manage it and provide effective protection. On one hand being a work of dissemination based on internet and on radio broadcasting, and on the other one of teaching based on educational innovation, and courses, conferences, and face-to-face seminars or distance platforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The core concepts, or threads, of Biosystems Engineering (BSEN) are variously understood by those within the discipline, but have never been unequivocally defined due to its early stage of development. This makes communication and teaching difficult compared to other well established engineering subjects. Biosystems Engineering is a field of Engineering which int egrates engineering science and design with applied biological, environmental and agricultural sciences. It represents an evolution of the Agricultural Engineering discipline applied to all living organisms not including biomedical applications. The basic key element for the emerging EU Biosystems Engineering program of studies is to ensure that it offers essential minimum fundamental engine ering knowledge and competences . A core curriculum developed by Erasmus Thematic Networks is used as benchmark for Agr icultural and Biosystems Engineering studies in Europe. The common basis of the core curriculum for the discipline across the Atlantic , including a minimum of competences comprising the Biosystems Engineering core competencies, has been defined by an Atlan tis project , but this needs to be taken further by defining the threads linking courses together. This paper presents a structured approach to define the Threads of BSEN . The definition of the mid-level competences and the associated learning outcomes has been one of the objectives of the Atlantis programme TABE.NET. The mid-level competences and learning outcomes for each of six specializations of BSEN are defined while the domain-specific knowledge to be acquired for each outcome is proposed. Once the proposed definitions are adopted, these threads will be available for global development of the BSEN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the mid-long-term after a nuclear accident, the contamination of drinking water sources, fish and other aquatic foodstuffs, irrigation supplies and people?s exposure during recreational activities may create considerable public concern, even though dose assessment may in certain situations indicate lesser importance than for other sources, as clearly experienced in the aftermath of past accidents. In such circumstances there are a number of available countermeasure options, ranging from specific chemical treatment of lakes to bans on fish ingestion or on the use of water for crop irrigation. The potential actions can be broadly grouped into four main categories, chemical, biological, physical and social. In some cases a combination of actions may be the optimal strategy and a decision support system (DSS) like MOIRA-PLUS can be of great help to optimise a decision. A further option is of course not to take any remedial actions, although this may also have significant socio-economic repercussions which should be adequately evaluated. MOIRA-PLUS is designed to allow for a reliable assessment of the long-term evolution of the radiological situation and of feasible alternative rehabilitation strategies, including an objective evaluation of their social, economic and ecological impacts in a rational and comprehensive manner. MOIRA-PLUS also features a decision analysis methodology, making use of multi-attribute analysis, which can take into account the preferences and needs of different types of stakeholders. The main functions and elements of the system are described summarily. Also the conclusions from end-user?s experiences with the system are discussed, including exercises involving the organizations responsible for emergency management and the affected services, as well as different local and regional stakeholders. MOIRAPLUS has proven to be a mature system, user friendly and relatively easy to set up. It can help to better decisionmaking by enabling a realistic evaluation of the complete impacts of possible recovery strategies. Also, the interaction with stakeholders has allowed identifying improvements of the system that have been recently implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modular organization and degree-degree correlations are ubiquitous in the connectivity structure of biological, technological, and social interacting systems. So far most studies have concentrated on unveiling both features in real world networks, but a model that succeeds in generating them simultaneously is needed. We consider a network of interacting phase oscillators, and an adaptation mechanism for the coupling that promotes the connection strengths between those elements that are dynamically correlated. We show that, under these circumstances, the dynamical organization of the oscillators shapes the topology of the graph in such a way that modularity and assortativity features emerge spontaneously and simultaneously. In turn, we prove that such an emergent structure is associated with an asymptotic arrangement of the collective dynamical state of the network into cluster synchronization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method for generating patient-specific high quality conforming hexahedral meshes is presented. The meshes are directly obtained from the segmentation of patient magnetic resonance (MR) images of abdominal aortic aneu-rysms (AAA). The MRI permits distinguishing between struc-tures of interest in soft tissue. Being so, the contours of the lumen, the aortic wall and the intraluminal thrombus (ILT) are available and thus the meshes represent the actual anato-my of the patient?s aneurysm, including the layered morpholo-gies of these structures. Most AAAs are located in the lower part of the aorta and the upper section of the iliac arteries, where the inherent tortuosity of the anatomy and the presence of the ILT makes the generation of high-quality elements at the bifurcation is a challenging task. In this work we propose a novel approach for building quadrilateral meshes for each surface of the sectioned geometry, and generating conforming hexahedral meshes by combining the quadrilateral meshes. Conforming hexahedral meshes are created for the wall and the ILT. The resulting elements are evaluated on four patients? datasets using the Scaled Jacobian metric. Hexahedral meshes of 25,000 elements with 94.8% of elements well-suited for FE analysis are generated.