860 resultados para Tariff on wool
Resumo:
Previous population dynamics data, generated for Amblyomma parvum Aragao and Aniblyomma cajennense (Fabricius) in Argentina and southeastern Brazil, have indicated that these ticks complete I generation per year, with larvae predominating in autumn, nymphs in winter, and mostly adults during spring and summer. The present study reports population dynamics data for free-living Amblyomma spp. ticks in northern Brazil (Amazon forest, latitude 10 degrees S, 63 degrees W), and for Amblyomma spp. ticks collected oil birds in Southeastern Brazil (latitude 23 degrees S, 45 degrees W). In northern Brazil, adult ticks predominated from mid-spring to mid-autumn, larvae predominated in early winter, and nymphs from mid-winter to mid-spring. Seven Amblyomma spp. were identified, although A. cajannense predominated in I of the 2 sites sampled. In southeastern Brazil, larval infestations on birds peaked in autumn, followed by a nymphal infestation peak in late winter. At least 32% and 75% of these larvae and nymphs, respectively, were identified as Amblyomma longirostre (Koch). Similar to previous work, the present study showed that Amblyomma spp. larvae and nymphs predominated during autumn-winter months, and mostly adults during spring-summer months, a pattern compatible with 1 genration/yr, even at latitude 10 degrees S in northern Brazil.
Resumo:
The present work evaluated rickettsial infection in dogs and their ticks in an area endemic for Brazilian spotted fever (BSF) in the metropolitan area of Sao Paulo, Brazil, where the tick Amblyomma aureolatum was presumed to be the vector of the disease. Ticks were collected on dogs from 185 houses, encompassing single infestations by Rhipicephalus sanguineus, Amblyomma aureolatum, Amblyomma longirostre, or Amblyomma sp. in dogs from 60 (32.4%), 77 (41.6%), 2 (1.1%), and 25 (13.5%) houses, respectively; 19 (10.3%) houses had dogs with mixed infestations by R. sanguineus and A. aureolatum; 1 (0.5%) house had dogs with infestations by A. aureolatum and A. longirostre; and 1 (0.5%) house had dogs with infestations by R. sanguineus and Amblyomma sp. Overall, A. aureolatum was present in dogs from 97 (52.4%) houses, and R. sanguineus in dogs from 80 (43.2%) houses. A total of 287 ticks (130 A. aureolatum and 157 R. sanguineus) infesting dogs from 98 houses were selected for testing by polymerase chain reaction (PCR) targeting rickettsial genes. Overall, 3.1% of the A. aureolatum ticks were infected by Rickettsia bellii, and 1.3% of the R. sanguineus were infected by Ricketttsii rickettsii. For serology, we selected 23 dogs living in and in the vicinity of the house where the R. rickettsii-infected ticks were collected. The indirect fluorescent antibody (IFA) test detected antibodies reactive with R. rickettsii in sera from 16 (69.6%) dogs, with titers ranging from 256 to 32,768. It is established that Amblyomma aureolatum is a vector of R. rickettsii in the Sao Paulo metropolitan area, but our results highlight for the first time in Brazil, a possible role of R. sanguineus in the epidemiology of R. rickettsii, corroborating previous findings in Mexico and the United States, where R. sanguineus has been implicated in the transmission of R. rickettsii to humans.
Resumo:
Ticks use bloodmeals as a Source of nutrients and energy to molt and survive until the next meal and to oviposit, in the case of females. However, only the larvae of some tick species are known to feed upon bats females are obligatorily autogenous, and nymphal stages are believed to not feed. We investigated the presence of blood ill a natural population of nymphal Antricola delacruzi ticks collected from bat guano; their ability to feed upon laboratory hosts: and the microscopic structure of both salivary glands and gut. DNA amplification of gut contents of freshly collected material was positive for a mammal in 4 of 11 first instar nymphs, but we were unsuccesful in the amplification of host bloodmeal DNA from late instar nymphs. All early nymphal stages (n = 10) fed oil rabbits. and host DNA was detected and sequenced from gut contents. However, all the large nymphs (n = 10) rejected feeding, and host DNA remained undetected in these ticks. All stages of A. delacruzi have salivary glands similar in morphology to the ixodid agranular Type I salivary gland acini and to granular Type II or Type B acini. All stages of A. delacruzi had a similar gut structure. consisting of digestive cells in the basal portion that contained hematin granules. Neither regenerative nor secretory cell traces were observed in the sections Of gut.
Resumo:
The argasid tick Ornithodoros marinkellei Kohls, Clifford, and Jones, 1969 was described 4 decades ago based on larval specimens collected from bats (Pteronotus spp.) in Colombia and Panama. Thereafter, larval O. marinkellei parasitizing bats were reported from Venezuela, Guyana, and Brazil. Herein, we describe the adults and nymph, and redescribe the larva of O. marinkellei based on specimens recently collected in the western Brazilian Amazon region. In contrast to all other known adult argasids, the idiosoma of both males and females of O. marinkellei is covered with sclerotized plaques. The idiosoma of the nymph of O. marinkellei is entirely micromamillated, and differs from the adults by the absence of plaques. The larva of O. marinkellei is morphologically similar to the larvae of the 2 other species belonging to the subgenus Subparmatus, i.e., Ornithodoros viguerasi Cooley and Kohls, 1941 and Ornithodoros mormoops Kohls, Clifford, and Jones, 1969. Because of the long and narrow dorsal plate, the larva of O. marinkellei is readily distinguished from O. viguerasi and O. mormoops. Comparison of our larvae from Brazil with O. marinkellei paratype specimens from Colombia confirmed their taxonomic identification. However, a few morphological differences, particularly in the size of the gnathosoma, were observed. Further studies are necessary to clarify whether O. marinkellei is a complex of different species, or a single species represented by morphologically polymorphic, and geographically distinct populations. Partial mitochondrial 16S rDNA gene sequences were generated for O. marinkellei specimens from Brazil, and compared with available homologous sequences in GenBank. Phylogenetic analyses revealed O. marinkellei to be distinct from the remaining argasid species available in GenBank, including other bat-associated tick species that are found in sympatry with O. marinkellei in the Neotropical region.