876 resultados para TO-TAIL COMPLEX


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cyclotides are a family of head-to-tail cyclized peptides that display exceptionally high stability and a range of biological activities. Acyclic permutants that contain a break in the circular backbone have been reported to be devoid of the haemolytic activity of the prototypic cyclotide kalata B1, but the potential role of the charges at the introduced termini in this loss of membraneolytic activity has not been fully determined. In this study, acyclic permutants of kalata B1 with capped N- and G termini were synthesized and found to adopt a native fold. These variants were observed to cause no measurable lysis of erythrocytes, strengthening the connection between backbone cyclization and haemolytic activity. (C) 2004 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclotides are plant-derived miniproteins that have the unusual features of a head-to-tail cyclized peptide backbone and a knotted arrangement of disulfide bonds. It had been postulated that they might be an especially large family of host defense agents, but this had not yet been tested by field data on cyclotide variation in wild plant populations. In this study, we sampled Australian Hybanthus (Violaceae) to gain an insight into the level of variation within populations, within species, and between species. A wealth of cyclotide diversity was discovered: at least 246 new cyclotides are present in the 11 species sampled, and 26 novel sequences were characterized. A new approach to the discovery of cyclotide sequences was developed based on the identification of a conserved sequence within a signal sequence in cyclotide precursors. The number of cyclotides in the Violaceae is now estimated to be >9000. Cyclotide physicochemical profiles were shown to be a useful taxonomic feature that reflected species and their morphological relationships. The novel sequences provided substantial insight into the tolerance of the cystine knot framework in cyclotides to amino acid substitutions and will facilitate protein engineering applications of this framework.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The solution structure of one of the first members of the cyclotide family of macrocyclic peptides to be discovered, circulin B has been determined and compared with that of circulin A and related cyclotides. Cyclotides are mini-proteins derived from plants that have the characteristic features of a head-to-tail cyclised peptide backbone and a knotted arrangement of their three disulfide bonds. First discovered because of their uterotonic or anti-HIV activity, they have also been reported to have activity against a range of Gram positive and Gram negative bacteria as well as fungi. The aim of the current study was to develop structure-activity relationships to rationalise this antimicrobial activity. Comparison of cyclotide structures and activities suggests that the presence and location of cationic residues may be a requirement for activity against Gram negative bacteria. Understanding the topological differences associated with the antimicrobial activity of the cyclotides is of significant interest and potentially may be harnessed for pharmaceutical applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lead compounds are known genotoxicants, principally affecting the integrity of chromosomes. Lead chloride and lead acetate induced concentration-dependent increases in micronucleus frequency in V79 cells, starting at 1.1 μ M lead chloride and 0.05 μ M lead acetate. The difference between the lead salts, which was expected based on their relative abilities to form complex acetato-cations, was confirmed in an independent experiment. CREST analyses of the micronuclei verified that lead chloride and acetate were predominantly aneugenic (CREST-positive response), which was consistent with the morphology of the micronuclei (larger micronuclei, compared with micronuclei induced by a clastogenic mechanism). The effects of high concentrations of lead salts on the microtubule network of V79 cells were also examined using immunofluorescence staining. The dose effects of these responses were consistent with the cytotoxicity of lead(II), as visualized in the neutral-red uptake assay. In a cell-free system, 20-60 μ M lead salts inhibited tubulin assembly dose-dependently. The no-observed-effect concentration of lead(II) in this assay was 10 μ M. This inhibitory effect was interpreted as a shift of the assembly/disassembly steady-state toward disassembly, e.g., by reducing the concentration of assembly-competent tubulin dimers. The effects of lead salts on microtubule-associated motor-protein functions were studied using a kinesin-gliding assay that mimics intracellular transport processes in vitro by quantifying the movement of paclitaxel-stabilized microtubules across a kinesin-coated glass surface. There was a dose-dependent effect of lead nitrate on microtubule motility. Lead nitrate affected the gliding velocities of microtubules starting at concentrations above 10 μ M and reached half-maximal inhibition of motility at about 50 μ M. The processes reported here point to relevant interactions of lead with tubulin and kinesin at low dose levels. Environ. Mal. Mutagen. 45:346-353, 2005. © 2005 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new approach to enantiomerically pure 2,8-dialkyl-1,7-dioxaspiro[5.5]undecanes and 2,7-dialkyl-1,6-dioxaspiro [4.5] decanes is described and utilizes enantiomerically pure homopropargylic alcohols obtained from lithium acetylide opening of enantiomerically pure epoxides, which are, in turn, acquired by hydrolytic kinetic resolution of the corresponding racemic epoxides. Alkyne carboxylation and conversion to the Weinreb amide may be followed by triple-bond manipulation prior to reaction with a second alkynyllithium derived from a homo- or propargylic alcohol. In this way, the two ring components of the spiroacetal are individually constructed, with deprotection and cyclization affording the spiroacetal. The procedure is illustrated by acquisition of (2S,5R,7S) and (2R,5R,7S)-2-n-butyl-7-methyl-1,6-dioxaspiro[4.5]-decanes (1), (2S,6R,8S)-2-methyl-8-n-pentyl-1,7-dioxaspiro[5.5]undecane (2), and (2S,6R,8S)-2-methyl-8-n-propyl-1,7-dioxaspiro[5.5]undecane (3). The widely distributed insect component, (2S,6R,8S)-2,8-dimethyl-1,7-dioxaspiro[5.5]undecane (4), was acquired by linking two identical alkyne precursors via ethyl formate. In addition, [H-2(4)]-regioisomers, 10,10,11,11-[H-2(4)] and 4,4,5,5-[H-2(4)] of 3 and 4,4,5,5-[H-2(4)]-4, were acquired by triple-bond deuteration, using deuterium gas and Wilkinson's catalyst. This alkyne-based approach is, in principle, applicable to more complex spiroacetal systems not only by use of more elaborate alkynes but also by triple-bond functionalization during the general sequence.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mangrove forest structure and sediment characteristics were examined in the extensive mangroves of Bocas del Toro, Republic of Panama. Forest structure was characterized to determine if spatial vegetation patterns were repeated over the Bocas del Toro landscape. Using a series of permanent plots and transects we found that the forests of Bocas del Toro were dominated by Rhizophora maugle with very few individuals of Avicennia germinans and Laguncularia racemosa. Despite this low species diversity, there was large variation in forest structure and in edaphic conditions (salinity, concentration of available phosphorus, Eh and sulphide concentration). Aboveground biomass varied 20-fold, from 6.8 Mg ha(-1) in dwarf forests to 194.3 Mg ha(-1) in the forests fringing the land. But variation in forest structure was predictable across the intertidal zone. There was a strong tree height gradient from seaward fringe (mean tree height 3.9 m), decreasing in stature in the interior dwarf forests (mean tree height 0.7 m), and increasing in stature in forests adjacent to the terrestrial forest (mean tree height 4.1 m). The predictable variation in forest structure emerges due to the complex interactions among edaphic and plant factors. Identifying predictable patterns in forest structure will aid in scaling up the ecosystem services provided by mangrove forests in coastal landscapes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Combinatorial chemistry has become an invaluable tool in medicinal chemistry for the identification of new drug leads. For example, libraries of predetermined sequences and head-to-tail cyclized peptides are routinely synthesized in our laboratory using the IRORI approach. Such libraries are used as molecular toolkits that enable the development of pharmacophores that define activity and specificity at receptor targets. These libraries can be quite large and difficult to handle, due to physical and chemical constraints imposed by their size. Therefore, smaller sub-libraries are often targeted for synthesis. The number of coupling reactions required can be greatly reduced if the peptides having common amino acids are grouped into the same sub-library (batching). This paper describes a schedule optimizer to minimize the number of coupling reactions by rotating and aligning sequences while simultaneously batching. The gradient descent method thereby reduces the number of coupling reactions required for synthesizing cyclic peptide libraries. We show that the algorithm results in a 75% reduction in the number of coupling reactions for a typical cyclic peptide library.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Human perception is finely tuned to extract structure about the 4D world of time and space as well as properties such as color and texture. Developing intuitions about spatial structure beyond 4D requires exploiting other perceptual and cognitive abilities. One of the most natural ways to explore complex spaces is for a user to actively navigate through them, using local explorations and global summaries to develop intuitions about structure, and then testing the developing ideas by further exploration. This article provides a brief overview of a technique for visualizing surfaces defined over moderate-dimensional binary spaces, by recursively unfolding them onto a 2D hypergraph. We briefly summarize the uses of a freely available Web-based visualization tool, Hyperspace Graph Paper (HSGP), for exploring fitness landscapes and search algorithms in evolutionary computation. HSGP provides a way for a user to actively explore a landscape, from simple tasks such as mapping the neighborhood structure of different points, to seeing global properties such as the size and distribution of basins of attraction or how different search algorithms interact with landscape structure. It has been most useful for exploring recursive and repetitive landscapes, and its strength is that it allows intuitions to be developed through active navigation by the user, and exploits the visual system's ability to detect pattern and texture. The technique is most effective when applied to continuous functions over Boolean variables using 4 to 16 dimensions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclotides are a recently discovered class of proteins that have a characteristic head-to-tail cyclized backbone stabilized by a knotted arrangement of three disulfide bonds. They are exceptionally resistant to chemical, enzymatic and thermal treatments because of their unique structural scaffold. Cyclotides have a range of bio-activities, including uterotonic, anti-HIV, anti-bacterial and cytotoxic activity but their insecticidal properties suggest that their natural physiological role is in plant defense. They are genetically encoded as linear precursors and subsequently processed to produce mature cyclic peptides but the mechanism by which this occurs remains unknown. Currently most cyclotides are obtained via direct extraction from plants in the Rubiaceae and Violaceae families. To facilitate the screening of cyclotides for structure-activity studies and to exploit them in drug design or agricultural applications a convenient route for the synthesis of cyclotides is vital. In this review the current chemical, recombinant and biosynthetic routes to the production of cyclotides are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclotides are mini-proteins of 28-37 amino acid residues that have the unusual feature of a head-to-tail cyclic backbone surrounding a cystine knot. This molecular architecture gives the cyclotides heightened resistance to thermal, chemical and enzymatic degradation and has prompted investigations into their use as scaffolds in peptide therapeutics. There are now more than 80 reported cyclotide sequences from plants in the families Rubiaceae, Violaceae and Cucurbitaceae, with a wide variety of biological activities observed. However, potentially limiting the development of cyclotide-based therapeutics is a lack of understanding of the mechanism by which these peptides are cyclized in vivo. Until now, no linear versions of cyclotides have been reported, limiting our understanding of the cyclization mechanism. This study reports the discovery of a naturally occurring linear cyclotide, violacin A, from the plant Viola odorata and discusses the implications for in vivo cyclization of peptides. The elucidation of the cDNA clone of violacin A revealed a point mutation that introduces a stop codon, which inhibits the translation of a key Asn residue that is thought to be required for cyclization. The three-dimensional solution structure of violacin A was determined and found to adopt the cystine knot fold of native cyclotides. Enzymatic stability assays on violacin A indicate that despite an increase in the flexibility of the structure relative to cyclic counterparts, the cystine knot preserves the overall stability of the molecule. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclotides are a large family of mini-proteins that have the distinguishing features of a head-to-tail cyclised backbone and a cystine knot formed by six conserved cysteine residues. They are present in plants from the Rubiaceae, Violaceae and Cucurbitaceae families. The unique structural features of the cyclotides make them extremely resistant to chemical, thermal and proteolytic degradation. In this article we review recent Studies from our laboratory that dissect the role of the individual structural elements in defining the stability of cyclotides. The resistance of cyclotides to chemical and proteolytic degradation is in large part due to the cystine knot, whereas the thermal stability is I composite of several features including the cystine knot, the cyclic backbone and the hydrogen bonding network. A range of biological activities of cyclotides is critically dependent oil the presence of the cyclic backbone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The hypothesis that lipid rafts exist in plasma membranes and have crucial biological functions remains controversial. The lateral heterogeneity of proteins in the plasma membrane is undisputed, but the contribution of cholesterol-dependent lipid assemblies to this complex, non-random organization promotes vigorous debate. In the light of recent studies with model membranes, computational modelling and innovative cell biology, I propose an updated model of lipid rafts that readily accommodates diverse views on plasma-membrane micro-organization.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cyclotide family of plant proteins is of interest because of their unique topology, which combines a head-to-tail cyclic backbone with an embedded cystine knot, and because their-remarkable chemical and biological properties make them ideal candidates as grafting templates for biologically active peptide epitopes. The present Study describes the first steps towards exploiting the cyclotide framework by synthesizing and structurally characterizing two grafted analogues of the cyclotide kalata B1. The modified peptides have polar or charged residues substituted for residues that form part of a surface-exposed hydrophobic patch that plays a significant role in the folding and biological activity of kalata B1. Both analogues retain the native cyclotide fold, but lack the undesired haemolytic activity of their parent molecule, kalata B1. This finding confirms the tolerance of the cyclotide framework to residue Substitutions and opens up possibilities for the Substitution of biologically active peptide epitopes into the framework.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cyclotides are a recently discovered family of miniproteins that contain a head-to-tail cyclized backbone and a knotted arrangement of disulfide bonds. They are approximately 30 amino acids in size and are present in high abundance in plants from the Violaceae, Rubiaceae, and Cucurbitaceae families, with individual plants containing a suite of up to 100 cyclotides. They have a diverse range of biological activities, including uterotonic, anti-HIV, antitumor, and antimicrobial activities, although their natural function is likely that of defending their host plants from pathogens and pests. This review focuses on the structural aspects of cyclotides, which may be thought of as a natural combinatorial peptide template in which a wide range of amino acids is displayed on a compact molecular core made up of the cyclic cystine knot structural motif. Cyclotides are exceptionally stable and are resistant to denaturation via thermal, chemical, or enzymatic treatments. The struclural features that contribute to their remarkable stability are described ill this review. (c) 2006 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cyclotides are a fascinating family of plant-derived peptides characterized by their head-to-tail cyclized backbone and knotted arrangement of three disulfide bonds. This conserved structural architecture, termed the CCK (cyclic cystine knot), is responsible for their exceptional resistance to thermal, chemical and enzymatic degradation. Cyclotides have a variety of biological activities, but their insecticidal activities suggest that their primary function is in plant defence. In the present study, we determined the cyclotide content of the sweet violet Viola odorata, a member of the Violaceae family. We identified 30 cyclotides from the aerial parts and roots of this plant, 13 of which are novel sequences. The new sequences provide information about the natural diversity of cyclotides and the role of particular residues in defining structure and function. As many of the biological activities of cyclotides appear to be associated with membrane interactions, we used haemolytic activity as a marker of bioactivity for a selection of the new cyclotides. The new cyclotides were tested for their ability to resist proteolysis by a range of enzymes and, in common with other cyclotides, were completely resistant to trypsin, pepsin and thermolysin. The results show that while biological activity varies with the sequence, the proteolytic stability of the framework does not, and appears to be an inherent feature of the cyclotide framework. The structure of one of the new cyclotides, cycloviolacin O14, was determined and shown to contain the CCK motif. This study confirms that cyclotides may be regarded as a natural combinatorial template that displays a variety of peptide epitopes most likely targeted to a range of plant pests and pathogens.