961 resultados para TISSUE-SPECIFIC STEM CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant adeno-associated virus (rAAV) are effective gene delivery vehicles that can mediate long-lasting transgene expression. However, tight regulation and tissue-specific transgene expression is required for certain therapeutic applications. For regulatable expression from the liver we designed a hepatospecific bidirectional and autoregulatory tetracycline (Tet)-On system (Tet(bidir)Alb) flanked by AAV inverted terminal repeats (ITRs). We characterized the inducible hepatospecific system in comparison with an inducible ubiquitous expression system (Tet(bidir)CMV) using luciferase (luc). Although the ubiquitous system led to luc expression throughout the mouse, luc expression derived from the hepatospecific system was restricted to the liver. Interestingly, the induction rate of the Tet(bidir)Alb was significantly higher than that of Tet(bidir)CMV, whereas leakage of Tet(bidir)Alb was significantly lower. To evaluate the therapeutic potential of this vector, an AAV-Tet(bidir)-Alb-expressing interleukin-12 (IL-12) was tested in a murine model for hepatic colorectal metastasis. The vector induced dose-dependent levels of IL-12 and interferon-γ (IFN-γ), showing no significant toxicity. AAV-Tet(bidir)-Alb-IL-12 was highly efficient in preventing establishment of metastasis in the liver and induced an efficient T-cell memory response to tumor cells. Thus, we have demonstrated persistent, and inducible in vivo expression of a gene from a liver-specific Tet-On inducible construct delivered via an AAV vector and proved to be an efficient tool for treating liver cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND. Human primary fetal bone cells (hFBC) are being characterized for use in bone tissue regeneration. Unlike human mesenchymal stem cells (hMSC), hFBC are partially differentiated with high expansion and regeneration potential. To date, proliferative and osteoblastic differentiation capacities of fetal bone cells remain poorly examined. The goal of this study was to define an environmental culture conditions for optimal proliferation and production of extracellular bone matrix leading to efficient bone repair. METHODS. Human primary FBC derived from our dedicated, consistent banks of bone cells comprising several fetal donors. For proliferation study, monolayer cultures of both cell types were expanded in DMEM or α- MEM media. Osteoblastic differentiation potentials of both hFBC and hMSC were evaluated through RT-PCR. Regulation of osteogenic differentiation by protein ligands Wnt3a and Wnt5a was studied by ALP enzymatic activity measurement. RESULTS. Evaluation of the proliferation rate demonstrated that hFBC proliferated more rapidly in α-MEM medium. Regarding growth factors that could stimulate cell proliferation rate, we observed that PDGF, FGF2 and Wnt3a had positive effects on proliferation of hFBC. Gene expression analysis demonstrated a higher expression of runx2 in hFBC cultured in basal conditions, which was was similar than that was observed in hMSC in osteoinductive culture conditions. Expression of sox9 was very low in hBFC and hMSC, compared to expression observed in fetal cartilage cells. Looking at osteogenic differentiation capacity, ALP activity was positively regulated byWnt5awhen hFBCwere cultured inα-MEM, but not in DMEM. Conversely, Wnt3a was shown to block the effect of osteogenic inductors on differentiation of both cell types. CONCLUSION. Data presented in this study indicate that the proliferation and differentiation of fetal and mesenchymal stem cells is optimal in α- MEM. Evidence for a pre-differentiated state of hBFC was given by extracellular matrix spontaneous mineralization as well as by higher ALP activity levels observed for these cells in baseline culture conditions, in comparison with hMSC. As we showed that, in vitro, hFBC express a higher capacity to differentiate in osteoblasts, they represent an attractive and promising prospect for fundamental research, and specifically for a new generation of skeletal tissue engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the substantial advances obtained in the treatment of localized malignancies, metastatic disease still lacks effective treatment and remains the primary cause of cancer mortality, including in breast cancer. Thus, in order to improve the survival of cancer patients it is necessary to effectively improve prevention or treatment of metastasis. To achieve this goal, complementary strategies can be envisaged: the first one is the eradication of established metastases by adding novel modalities to current treatments, such as immunotherapy or targeted therapies. A second one is to prevent tumor cell dissemination to secondary organs by targeting specific steps governing the metastatic cascade and organ-specific tropism. A third one is to block the colonization of secondary organs and subsequent cancer cell growth by impinging on the ability of disseminated cancer cells to adapt to the novel microenvironment. To obtain optimal results it might be necessary to combine these strategies. The development of therapeutic approaches aimed at preventing dissemination and organ colonization requires a deeper understanding of the specific genetic events occurring in cancer cells and of the host responses that co-operate to promote metastasis formation. Recent developments in the field disclosed novel mechanisms of metastasis. In particular the crosstalk between disseminated cancer cells and the host microenvironment is emerging as a critical determinant of metastasis. The identification of tissue-specific signals involved in metastatic progression will open the way to new therapeutic strategies. Here, we will review recent progress in the field, with particular emphasis on the mechanisms of organ specific dissemination and colonization of breast cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initiation of antiretroviral therapy during the earliest stages of HIV-1 infection may limit the seeding of a long-lasting viral reservoir, but long-term effects of early antiretroviral treatment initiation remain unknown. Here, we analyzed immunological and virological characteristics of nine patients who started antiretroviral therapy at primary HIV-1 infection and remained on suppressive treatment for >10 years; patients with similar treatment duration but initiation of suppressive therapy during chronic HIV-1 infection served as controls. We observed that independently of the timing of treatment initiation, HIV-1 DNA in CD4 T cells decayed primarily during the initial 3 to 4 years of treatment. However, in patients who started antiretroviral therapy in early infection, this decay occurred faster and was more pronounced, leading to substantially lower levels of cell-associated HIV-1 DNA after long-term treatment. Despite this smaller size, the viral CD4 T cell reservoir in persons with early treatment initiation consisted more dominantly of the long-lasting central-memory and T memory stem cells. HIV-1-specific T cell responses remained continuously detectable during antiretroviral therapy, independently of the timing of treatment initiation. Together, these data suggest that early HIV-1 treatment initiation, even when continued for >10 years, is unlikely to lead to viral eradication, but the presence of low viral reservoirs and durable HIV-1 T cell responses may make such patients good candidates for future interventional studies aiming at HIV-1 eradication and cure. IMPORTANCE: Antiretroviral therapy can effectively suppress HIV-1 replication to undetectable levels; however, HIV-1 can persist despite treatment, and viral replication rapidly rebounds when treatment is discontinued. This is mainly due to the presence of latently infected CD4 T cells, which are not susceptible to antiretroviral drugs. Starting treatment in the earliest stages of HIV-1 infection can limit the number of these latently infected cells, raising the possibility that these viral reservoirs are naturally eliminated if suppressive antiretroviral treatment is continued for extremely long periods of time. Here, we analyzed nine patients who started on antiretroviral therapy within the earliest weeks of the disease and continued treatment for more than 10 years. Our data show that early treatment accelerated the decay of infected CD4 T cells and led to very low residual levels of detectable HIV-1 after long-term therapy, levels that were otherwise detectable in patients who are able to maintain a spontaneous, drug-free control of HIV-1 replication. Thus, long-term antiretroviral treatment started during early infection cannot eliminate HIV-1, but the reduced reservoirs of HIV-1 infected cells in such patients may increase their chances to respond to clinical interventions aiming at inducing a drug-free remission of HIV-1 infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus. METHODOLOGY/FINDINGS: Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation. CONCLUSIONS/SIGNIFICANCE: This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activity of adult stem cells is essential to replenish mature cells constantly lost due to normal tissue turnover. By a poorly understood mechanism, stem cells are maintained through self-renewal while concomitantly producing differentiated progeny. Here, we provide genetic evidence for an unexpected function of the c-Myc protein in the homeostasis of hematopoietic stem cells (HSCs). Conditional elimination of c-Myc activity in the bone marrow (BM) results in severe cytopenia and accumulation of HSCs in situ. Mutant HSCs self-renew and accumulate due to their failure to initiate normal stem cell differentiation. Impaired differentiation of c-Myc-deficient HSCs is linked to their localization in the differentiation preventative BM niche environment, and correlates with up-regulation of N-cadherin and a number of adhesion receptors, suggesting that release of HSCs from the stem cell niche requires c-Myc activity. Accordingly, enforced c-Myc expression in HSCs represses N-cadherin and integrins leading to loss of self-renewal activity at the expense of differentiation. Endogenous c-Myc is differentially expressed and induced upon differentiation of long-term HSCs. Collectively, our data indicate that c-Myc controls the balance between stem cell self-renewal and differentiation, presumably by regulating the interaction between HSCs and their niche.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell therapy for nucleus pulposus (NP) regeneration is an attractive treatment for early disc degeneration as shown by studies using autologous NP cells or stem cells. Another potential source of cells is foetal cells. We investigated the feasibility of isolating foetal cells from human foetal spine tissues and assessed their chondrogenic potential in alginate bead cultures. Histology and immunohistochemistry of foetal tissues showed that the structure and the matrix composition (aggrecan, type I and II collagen) of foetal intervertebral disc (IVD) were similar to adult IVD. Isolated foetal cells were cultured in monolayer in basic media supplemented with 10% Fetal Bovine Serum (FBS) and from each foetal tissue donation, a cell bank of foetal spine cells at passage 2 was established and was composed of around 2000 vials of 5 million cells. Gene expression and immunohistochemistry of foetal spine cells cultured in alginate beads during 28 days showed that cells were able to produce aggrecan and type II collagen and very low level of type I and type X collagen, indicating chondrogenic differentiation. However variability in matrix synthesis was observed between donors. In conclusion, foetal cells could be isolated from human foetal spine tissues and since these cells showed chondrogenic potential, they could be a potential cell source for IVD regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, MVA virus vectors carrying HIV-1 genes are being developed as HIV-1/AIDS prophylactic/therapeutic vaccines. Nevertheless, little is known about the impact of these vectors on human dendritic cells (DC) and their capacity to present HIV-1 antigens to human HIV-specific T cells. This study aimed to characterize the interaction of MVA and MVA expressing the HIV-1 genes Env-Gag-Pol-Nef of clade B (referred to as MVA-B) in human monocyte-derived dendritic cells (MDDC) and the subsequent processes of HIV-1 antigen presentation and activation of memory HIV-1-specific T lymphocytes. For these purposes, we performed ex vivo assays with MDDC and autologous lymphocytes from asymptomatic HIV-infected patients. Infection of MDDC with MVA-B or MVA, at the optimal dose of 0.3 PFU/MDDC, induced by itself a moderate degree of maturation of MDDC, involving secretion of cytokines and chemokines (IL1-ra, IL-7, TNF-α, IL-6, IL-12, IL-15, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, IP-10, MIG, and IFN-α). MDDC infected with MVA or MVA-B and following a period of 48 h or 72 h of maturation were able to migrate toward CCL19 or CCL21 chemokine gradients. MVA-B infection induced apoptosis of the infected cells and the resulting apoptotic bodies were engulfed by the uninfected MDDC, which cross-presented HIV-1 antigens to autologous CD8+ T lymphocytes. MVA-B-infected MDDC co-cultured with autologous T lymphocytes induced a highly functional HIV-specific CD8+ T cell response including proliferation, secretion of IFN-γ, IL-2, TNF-α, MIP-1β, MIP-1α, RANTES and IL-6, and strong cytotoxic activity against autologous HIV-1-infected CD4+ T lymphocytes. These results evidence the adjuvant role of the vector itself (MVA) and support the clinical development of prophylactic and therapeutic anti-HIV vaccines based on MVA-B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although tumor heterogeneity is widely accepted, the existence of cancer stem cells (CSCs) and their proposed role in tumor maintenance has always been challenged and remains a matter of debate. Recently, a path-breaking chapter was added to this saga when three independent groups reported the in vivo existence of CSCs in brain, skin and intestinal tumors using lineage-tracing and thus strengthens the CSC concept; even though certain fundamental caveats are always associated with lineage-tracing approach. In principle, the CSC hypothesis proposes that similar to normal stem cells, CSCs maintain self renewal and multilineage differentiation property and are found at the central echelon of cellular hierarchy present within tumors. However, these cells differ from their normal counterpart by maintaining their malignant potential, alteration of genomic integrity, epigenetic identity and the expression of specific surface protein profiles. As CSCs are highly resistant to chemotherapeutics, they are thought to be a crucial factor involved in tumor relapse and superficially appear as the ultimate therapeutic target. However, even that is not the end; further complication is attributed by reports of bidirectional regeneration mechanism for CSCs, one from their self-renewal capability and another from the recently proposed concept of dynamic equilibrium between CSCs and non-CSCs via their interconversion. This phenomenon has currently added a new layer of complexity in understanding the biology of tumor heterogeneity. In-spite of its associated controversies, this area has rapidly emerged as the center of attention for researchers and clinicians, because of the conceptual framework it provides towards devising new therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Chemokines are implicated in T-cell trafficking. We mapped the chemokine landscape in advanced stage ovarian cancer and characterized the expression of cognate receptors in autologous dendritic cell (DC)-vaccine primed T cells in the context of cell-based immunotherapy. EXPERIMENTAL DESIGN: The expression of all known human chemokines in patients with primary ovarian cancer was analyzed on two independent microarray datasets and validated on tissue microarray. Peripheral blood T cells from five HLA-A2 patients with recurrent ovarian cancer, who previously received autologous tumor DC vaccine, underwent CD3/CD28 costimulation and expansion ex vivo. Tumor-specific T cells were identified by HER2/neu pentamer staining and were evaluated for the expression and functionality of chemokine receptors important for homing to ovarian cancer. RESULTS: The chemokine landscape of ovarian cancer is heterogeneous with high expression of known lymphocyte-recruiting chemokines (CCL2, CCL4, and CCL5) in tumors with intraepithelial T cells, whereas CXCL10, CXCL12, and CXCL16 are expressed quasi-universally, including in tumors lacking tumor-infiltrating T cells. DC-vaccine primed T cells were found to express the cognate receptors for the above chemokines. Ex vivo CD3/CD28 costimulation and expansion of vaccine-primed Tcells upregulated CXCR3 and CXCR4, and enhanced their migration toward universally expressed chemokines in ovarian cancer. CONCLUSIONS: DC-primed tumor-specific T cells are armed with the appropriate receptors to migrate toward universal ovarian cancer chemokines, and these receptors are further upregulated by ex vivo CD3/CD28 costimulation, which render T cells more fit for migrating toward these chemokines. Clin Cancer Res; 21(12); 2840-50. ©2015 AACR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during cardiac differentiation and morphogenesis. Enhancer expression correlates with the emergence of active enhancer chromatin states, the initiation of RNA polymerase II at enhancer loci and expression of target genes. Orthologous human sequences are also transcribed in fetal human hearts and cardiac progenitor cells. Through a systematic bioinformatic analysis, we identified and characterized, for the first time, a catalog of lncRNAs that are expressed during embryonic stem cell differentiation into cardiomyocytes and associated with active cardiac enhancer sequences. RNA-sequencing demonstrates that many of these transcripts are polyadenylated, multi-exonic long noncoding RNAs. Moreover, knockdown of two enhancer-associated lncRNAs resulted in the specific downregulation of their predicted target genes. Interestingly, the reactivation of the fetal gene program, a hallmark of the stress response in the adult heart, is accompanied by increased expression of fetal cardiac enhancer transcripts. Altogether, these findings demonstrate that the activity of cardiac enhancers and expression of their target genes are associated with the production of enhancer-derived lncRNAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selektiivisten estrogeenireseptorin muuntelijoiden (serm) vaikutus rintasyöpäsolujen ja luun solujen kuolemaan Selektiiviset estrogeenireseptorin muuntelijat (SERMit) ovat ryhmä kemialliselta rakenteeltaan erilaisia yhdisteitä jotka sitoutuvat solunsisäisiin estrogeenireseptoreihin toimien joko estrogeenin kaltaisina yhdisteinä tai estrogeenin vastavaikuttajina. Tamoksifeeni on SERM –yhdiste, jota on jo pitkään käytetty estrogeenireseptoreita (ER) ilmentävän rintasyövän lääkehoidossa. Tamoksifeeni sekä estää rintasyöpäsolujen jakaantumista että toisaalta aikaansaa niiden apoptoosin eli ohjelmoidun solukuoleman muuntelemalla ER-välitteisesti kohdesolun geenien ilmentymistä. Viimeaikaiset tutkimustulokset ovat kuitenkin osoittaneet tamoksifeenilla olevan myös nopeampia, nongenomisia vaikutusmekanismeja. Tässä väitöskirjatyössä tutkimme niitä nopeita vaikutusmekanismeja joiden avulla tamoksifeeni vaikuttaa rintasyöpäsolujen elinkykyyn. Osoitamme että tamoksifeeni farmakologisina pitoisuuksina aikaansaa nopean mitokondriaalisen solukuolemaan johtavan signallointireitin aktivoitumisen rintasyöpäsoluissa. Tämän lisäksi tutkimme myös tamoksifeenin aiheuttamaan mitokondriovaurioon johtavia tekijöitä. Tutkimustuloksemme osoittavat että ER-positiivisissa rintasyöpäsoluissa tamoksifeeni indusoi pitkäkestoisen ERK-kinaasiaktivaation, joka voidaan estää 17-beta-estradiolilla. Tamoksifeenin aikaansaama nopea solukuolema on pääosin ER:sta riippumaton tapahtuma, mutta siihen voidaan vaikuttaa myös ER-välitteisin mekanismein. Sen sijaan epidermaalisen kasvutekijäreseptorin (EGFR) voitiin osoittaa osallistuvan tamoksifeenin nopeiden vaikutusten välittämiseen. Tämän lisäksi vertailimme myös estradiolin ja eri SERM-yhdisteiden kykyä suojata apoptoosilta käyttämällä osteoblastiperäisiä soluja. Pytyäksemme vertailemaan ER-isotyyppien roolia eri yhdisteiden suojavaikutuksissa, transfektoimme U2OS osteosarkoomasolulinjan ilmentämään pysyvästi joko ERalfaa tai ERbetaa. Tulostemme mukaan sekä estradioli että uusi SERM-yhdiste ospemifeeni suojaavat osteoblastin kaltaisia soluja etoposidi-indusoidulta apoptoosilta. Sekä ERalfa että ERbeta pystyivät välittämään suojavaikutusta, joskin vaikutukset erosivat toisistaan. Lisäksi havaitsimme edellä mainitun suojavaikutuksen olevan yhteydessä muutoksiin solujen sytokiiniekspressiossa. Tietoa SERM-yhdisteiden anti-ja proapoptoottisten vaikutusmekanismeista eri kohdekudoksissa voidaan mahdollisesti hyödyntää kehiteltäessä uusia kudosspesifisiä SERM-yhdisteitä.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) are major executors of extracellular matrix remodeling and, consequently, play key roles in the response of cells to their microenvironment. The experimentally accessible stem cell population and the robust regenerative capabilities of planarians offer an ideal model to study how modulation of the proteolytic system in the extracellular environment affects cell behavior in vivo. Genome-wide identification of Schmidtea mediterranea MMPs reveals that planarians possess four mmp-like genes. Two of them (mmp1 and mmp2) are strongly expressed in a subset of secretory cells and encode putative matrilysins. The other genes (mt-mmpA and mt-mmpB) are widely expressed in postmitotic cells and appear structurally related to membrane-type MMPs. These genes are conserved in the planarian Dugesia japonica. Here we explore the role of the planarian mmp genes by RNA interference (RNAi) during tissue homeostasis and regeneration. Our analyses identify essential functions for two of them. Following inhibition of mmp1 planarians display dramatic disruption of tissues architecture and significant decrease in cell death. These results suggest that mmp1 controls tissue turnover, modulating survival of postmitotic cells. Unexpectedly, the ability to regenerate is unaffected by mmp1(RNAi). Silencing of mt-mmpA alters tissue integrity and delays blastema growth, without affecting proliferation of stem cells. Our data support the possibility that the activity of this protease modulates cell migration and regulates anoikis, with a consequent pivotal role in tissue homeostasis and regeneration. Our data provide evidence of the involvement of specific MMPs in tissue homeostasis and regeneration and demonstrate that the behavior of planarian stem cells is critically dependent on the microenvironment surrounding these cells. Studying MMPs function in the planarian model provides evidence on how individual proteases work in vivo in adult tissues. These results have high potential to generate significant information for development of regenerative and anti cancer therapies.