907 resultados para TCM medium
Resumo:
A major goal of experimental and clinical hematology is the identification of mechanisms and conditions that support the expansion of transplantable hematopoietic stem cells. In normal marrow, such cells appear to be identical to (or represent a subset of) a population referred to as long-term-culture-initiating cells (LTC-ICs) so-named because of their ability to produce colony-forming cell (CFC) progeny for > or = 5 weeks when cocultured with stromal fibroblasts. Some expansion of LTC-ICs in vitro has recently been described, but identification of the factors required and whether LTC-IC self-renewal divisions are involved have remained unresolved issues. To address these issues, we examined the maintenance and/or generation of LTC-ICs from single CD34+ CD38- cells cultured for variable periods under different culture conditions. Analysis of the progeny obtained from cultures containing a feeder layer of murine fibroblasts engineered to produce steel factor, interleukin (IL)-3, and granulocyte colony-stimulating factor showed that approximately 20% of the input LTC-ICs (representing approximately 2% of the original CD34+ CD38- cells) executed self-renewal divisions within a 6-week period. Incubation of the same CD34+ CD38- starting populations as single cells in a defined (serum free) liquid medium supplemented with Flt-3 ligand, steel factor, IL-3, IL-6, granulocyte colony-stimulating factor, and nerve growth factor resulted in the proliferation of initial cells to produce clones of from 4 to 1000 cells within 10 days, approximately 40% of which included > or = 1 LTC-IC. In contrast, in similar cultures containing methylcellulose, input LTC-ICs appeared to persist but not divide. Overall the LTC-IC expansion in the liquid cultures was 30-fold in the first 10 days and 50-fold by the end of another 1-3 weeks. Documentation of human LTC-IC self-renewal in vitro and identification of defined conditions that permit their extensive and rapid amplification should facilitate analysis of the molecular mechanisms underlying these processes and their exploitation for a variety of therapeutic applications.
Resumo:
Experimental evidence is presented that supports the possibility of building a "molecular drill." By the adsorption of a vesicle onto a porous substrate (specifically, a lycopode grain), it was possible to increase the permeability of the vesicle by locally stretching its membrane. Molecules contained within the vesicle, which could not cross the membrane, were delivered to the porous substrate upon adsorption. This general process could provide another method for drug delivery and targeting.
Resumo:
We present a library of Penn State Fiber Optic Echelle (FOE) observations of a sample of field stars with spectral types F to M and luminosity classes V to I. The spectral coverage is from 3800 to 10000 Å with a nominal resolving power of 12,000. These spectra include many of the spectral lines most widely used as optical and near-infrared indicators of chromospheric activity such as the Balmer lines (Hα to H epsilon), Ca II H & K, the Mg I b triplet, Na I D_1, D_2, He I D_3, and Ca II IRT lines. There are also a large number of photospheric lines, which can also be affected by chromospheric activity, and temperature-sensitive photospheric features such as TiO bands. The spectra have been compiled with the goal of providing a set of standards observed at medium resolution. We have extensively used such data for the study of active chromosphere stars by applying a spectral subtraction technique. However, the data set presented here can also be utilized in a wide variety of ways ranging from radial velocity templates to study of variable stars and stellar population synthesis. This library can also be used for spectral classification purposes and determination of atmospheric parameters (T_eff, log g, [Fe/H]). A digital version of all the fully reduced spectra is available via ftp and the World Wide Web (WWW) in FITS format.
Resumo:
Different non-Fourier models of heat conduction have been considered in recent years, in a growing area of applications, to model microscale and ultrafast, transient, nonequilibrium responses in heat and mass transfer. In this work, using Fourier transforms, we obtain exact solutions for different lagging models of heat conduction in a semi-infinite domain, which allow the construction of analytic-numerical solutions with prescribed accuracy. Examples of numerical computations, comparing the properties of the models considered, are presented.
Resumo:
The electrochemical behaviour of o-cresol in acidic medium on platinum electrode has been studied by cyclic voltammetry and in situ Fourier transform infrared spectroscopy. The o-cresol suffers hydrolysis during oxidation giving rise to the formation of methyl-p-benzoquinone. In situ FTIR spectroscopic studies also reveal the presence of CO2, formed as a consequence of the rupture of the aromatic ring. Moreover, the oxidation of o-cresol in acidic medium produces a polymeric film on the platinum surface that precludes further oxidation of o-cresol. The reduction of o-cresol at potentials below 0 V produces in the first step the partial reduction of the aromatic ring and when the potential goes to values below 0 V, methyl-cyclohexanone.
Resumo:
The status of English as a lingua franca has led European universities to implement the use of this language as a medium of instruction (EMI). This study presents an analysis of the status quo of EMI at the University of Alicante. It takes into account the institution`s language policy and the programs which offer subjects in English, as well as the challenges, needs and benefits of the professors and students. Qualitative and quantitative data was collected by means of questionnaires and semi-structured interviews. The findings of this needs analysis will help us to create an action plan that will include teacher and student training schemes to foster internationalization.
Resumo:
Different Pt- and Ru-doped Ti/SnO2–Sb electrodes were synthesized by thermal decomposition. The effect of the gradual substitution of Sb by Ru in the nominal composition on the physicochemical and electrochemical properties were evaluated. The electrochemical stability of the electrodes was estimated from accelerated tests at 0.5 A cm–2 in 1 M NaOH. Both as-synthesized and deactivated electrodes were thoroughly characterized by scanning electron microscopy (SEM), energy-dispersive X-ray microanalysis (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction analysis (XRD). The incorporation of a small amount (about 3 at. %) of both Pt and Ru into the SnO2–Sb electrodes produced a 400-times increase in their service life in alkaline medium, with no remarkable change in the electrocatalysis of the oxygen evolution reaction (OER). It is concluded that the deactivation of the electrodes is promoted by alkaline dissolution of metal species and coating detachment at high potentials. The introduction of Pt has a coating compacting effect, and Ru(IV), at low amounts until 9.75 at. %, replaces the Sn(IV) cations in the rutile-like SnO2 structure to form a solid solution that strongly increases the stability of the electrodes. The observed Ru segregation and decreased stability for larger Ru contents (x > 9.75 at. %), together with the selective dissolution of Ru after deactivation, suggest that the formation of a homogeneous (RuδSn1−δ)O2 single-phase is crucial for the stabilization of these electrodes.