958 resultados para T regulatory cells


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbances in iron metabolism often accompany liver disease in humans and hepatic iron deposition is a frequent finding. Since the peptide hepcidin, a major regulator of body iron homeostasis, is synthesised in the liver, alterations in hepcidin expression could be responsible for these effects. To investigate this possibility, we studied hepcidin expression in liver biopsies from patients with hepatitis C virus (HCV) infection, non-alcoholic fatty liver disease (NAFLD) and hemochromatosis (HC). Total RNA was extracted from the liver tissue of 24 HCV, 17 NASH and 5 HC patients, and 17 liver transplant donors (controls). The levels of mRNA for hepcidin and several other molecules involved in iron metabolism (DMT1, Dcytb, hephaestin, ferroportin, TfR1, TfR2, HFE and HJV) were examined by ribonuclease protection assay and expressed relative to the housekeeping gene GAPDH. The expression of hepcidin was significantly decreased in HCV and NASH patients relative to control liver (109±16 and 200±44 versus 325±26 respectively; P=0.008 and 0.02). We have previously reported similar findings in patients with HC, and this was confirmed in the current analysis (176±21; P=0.003). In both HCV and NAFLD patients the expression of the iron reductase Dcytb and the transferrin binding regulatory molecule TfR2 was also decreased, while the cellular iron exporter ferroportin showed a significant increase. Levels of the mRNA for the iron oxidase hephaestin were lower in HCV patients alone, while expression of the major transferrin binding molecule TfR1 was decreased only in NAFLD patients. Of particular interest was the finding that the expression of HJV (which is mutated in patients with juvenile HC) was significantly increased in NAFLD patients. No changes were seen in the expression of the iron importer DMT1 or the regulatory molecule HFE. Decreased expression of hepcidin in patients with HCV and NAFLD provides an explanation why iron homeostasis could be perturbed in these disorders. Reduced hepcidin levels would increase intestinal iron absorption and iron release from macrophages, which could contribute to hepatic iron accumulation. This in turn could lead to alterations in the expression of various proteins involved in iron transport and its regulation. Indeed most of the changes in the expression of such molecules observed in this study are consistent with this. However, the mechanisms leading to changes in the expression of hepcidin in these diseases remain to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To target antigen-loaded liposomes to myeloid APC in vivo for immunotherapy and to manipulate immune function through liposome composition. Method: Liposomes were loaded with ovalbumin, the lipophilic red fluorescent marker, DiI, with or without QuilA adjuvant then injected either i.v. or s.c. to naı¨ ve C57Bl/6 mice. Spleen, liver and draining LN were stained with MHC class II and various myeloid markers to determine the uptake of liposomes. Frozen sections of spleen and draining LN were stained with FITC-labeled mAb to determine which cells take up the liposomes. To determine the effect on OVA-specific T cell responses, liposomes were administered to Balb/c mice which received DO11.10 OVAspecific TCR transgenic T cells labelled with CFSE. Results: The DiI fluorescence was visualized in MHC class II+ macrophages and DC in draining lymph nodes after s.c. injection and in spleen and liver after i.v injection. Immunofluorescence microscopy shows liposome uptake in marginal zone macrophages and some DC in the T cell areas of the spleen after i.v. injection. Administration of ova-liposomes with or without QuilA stimulated a specific T cell response as measured by CFSE dilution. Conclusion: APC of liver, spleen and LN, and subsequent antigen presentation to T cells can be targeted for immunotherapy by the administration of liposomes encapsulating antigen and adjuvant. Varying the composition and routes of liposome administration is expected to alter the function of the targeted APC and the T cell response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhibition of NFkB by the compound Bay 11–7082 (Bay) induces tolerogenic properties in dendritic cells (DC). While activation of NFkB can be induced by reactive oxygen species (ROS) and thiol/disulfide redox states, the consequences of NFkB blockade on ROS/redox state is not known. To generate immature DC, monocytes were cultured in GM-CSF and IL-4 (with or without Bay) for 48 h. Genes potentially involved in redox regulation were determined using microarray technology and validated using FACS, real-time PCR or western blotting. ROS were measured using two fluorescent dyes DHR-123 and DHE (to detect H2O2 or O2 respectively). We found increased expression of genes associated with reductants such as thioredoxin reductase (TrxR1) and glutathione (GSH), although those associated with the breakdown of H2O2 such as glutathione peroxidase, peroxiredoxins and catalase were decreased. Interestingly, Bay-treated DC produced less ROS in comparison to control DC under basal conditions and following stimulation with various pro-oxidants. In conclusion, Bay-treated DC display not only tolerogenic properties but also an intracellular reducing environment and an impaired ability to produce ROS. We are currently investigating whether exogenous ROS can interfere with the tolerogenic properties of Bay-treated DC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of thymic versus peripheral epithelial cells in the negative selection of the peptide-specific CD8 T cell repertoire is still largely unresolved. We have generated TCRb chain transgenic mice in which 20–35% of peripheral CD8 T cells recognize an epitope from a viral, nuclear oncoprotein (human papillomavirus type 16 E7) in the context ofMHC class I, H-2Db. When T cells from these transgenic mice develop through the thymus of a second transgenic mouse expressing E7 from a keratin 14 promoter, no major perturbation to thymic T cell development is observed over a 7 month period. In contrast, peripheral CD8 T cell responses in these same mice (E7TCRxK14E7 double transgenic) become reduced over time. This data suggests that peripheral tolerance mechanisms predominate over thymic negative selection in controlling CD8 T cell responses to this epithelial, nuclear oncoprotein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dendritic cells (DC) are the potent antigen presenting cells which modulate T cell responses to self or non-self antigens. DC play a significant role in the pathogenesis of autoimmune diseases, inflammation and infection, but also in the maintenance of tolerance. NF-kappaB, particularly RelB is a crucial pathway for myeloid DC differentiation and functional maturation. While the current paradigm is that mature, nuclear RelB+ DC prime T cells for immunity/autoimmunity and immature DC for tolerance, RelB-deficient mice paradoxically develop generalised systemic autoimmune inflammatory disease with myelopoiesis and splenomegaly. Previous studies suggested abnormal DC differentiation in healthy relatives of type 1 diabetes (t1dm) patients. Therefore, we compared NF- kB activation in monocyte-derived DC from t1dm and non-t1dm controls in response to LPS. While resting DC appeared normal, DC from 6 out of 7 t1dm patients but no t2dm or rheumatoid arthritis patients failed to translocate NF- kB subunits to the nucleus in response to LPS, along with a failure to up-regulate expression of cell surface CD40 and MHC class I. NF- kB subunit mRNA increased normally in t1dm DC after LPS. Both the classical or non-canonical NF- kB pathways were affected as both TNF-a and CD40 stimulation led to a similarly abnormal NF- kB response. In contrast, expression of phosphorylated p38 MAPK and pro-inflammatory cytokine production was intact. These abnormalities in NF- kB activation appear to be generally and specifically applicable at a post-translational level in t1dm, and have the capacity to profoundly influence immunoregulation in affected individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RelB, NIK and TRAF6-deficient mice die prematurely with multi-organ inflammatory disease and apparent excessive myelopoiesis. While thymic development of CD4+CD25+ regulatory T cells (Treg) is reduced in TRAF6 deficient mice, the impact of this on inflammation is not known. Here we show that while RelB deficient thymic stroma is unable to sustain the development of Treg, surprisingly, FoxP3hi Treg are increased in the periphery. Peripheral expansion of Treg is driven by GITRligand, expressed by immature monocytes maintained by RelBdeficient stroma. RelB-deficient DC fail to activate Treg suppressor function. The data reveal the dual roles of RelB in both hemopoietic and stromal cells to maintain tolerance and contain inflammation through Treg and DC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disorders of androgen production can occur in all steps of testosterone biosynthesis and secretion carried out by the foetal Leydig cells as well as in the conversion of testosterone into dihydrotestosterone (DHT). The differentiation of Leydig cells from mesenchymal cells is the first walk for testosterone production. In 46,XY disorders of sex development (DSDs) due to Leydig cell hypoplasia, there is a failure in intrauterine and postnatal virilisation due to the paucity of interstitial Leydig cells to secrete testosterone. Enzymatic defects which impair the normal synthesis of testosterone from cholesterol and the conversion of testosterone to its active metabolite DHT are other causes of DSD due to impaired androgen production. Mutations in the genes that codify the enzymes acting in the steps from cholesterol to DHT have been identified in affected patients. Patients with 46,XY DSD secondary to defects in androgen production show a variable phenotype, strongly depending of the specific mutated gene. Often, these conditions are detected at birth due to the ambiguity of external genitalia but, in several patients, the extremely undervirilised genitalia postpone the diagnosis until late childhood or even adulthood. These patients should receive long-term care provided by multidisciplinary teams with experience in this clinical management. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biphasic life cycle, characterised by metamorphosis from a pelagic larva to a benthic adult, is found throughout the Metazoa. So is sexual reproduction via eggs and sperm. Amidst a tangled web of hypotheses on the origin of metazoan biphasy, current weight of opinion lies with a simple, larva-like holopelagic ancestor that independently settled multiple times to incorporate a benthic phase into the life cycle. This school of thought derives from Haeckel's interpretation of the gastrula as the recapitulation of a gastrean ancestor that evolved via selection on a simple, planktonic hollow ball-of-cells to develop the capacity to feed. We suggest that a paradigm shift is required to accomodate accumulating evidence of the genomic and developmental complexity of the metazoan last common ancestor, which was likely to have already possessed a biphasic lifecycle. Here we incorporate recent evidence from basal metazoans, in particular poriferans, to argue that a more parsimonious theory of the origin of biphasy is as a direct consequence of sexual reproduction in an ancestral benthic adult form. The metazoan embryo can itself be considered the precursor to a biphasic life cycle, wherein the embryo represents one phase and the adult another. Embryos in the water column are subject to natural selection for longeveity and dispersal, which sets them on the evolutionary trajectory towards the crown metazoan planktonic larvae. This alternate view considers the conserved use of regulatory genes in disparate metazoans as a reflection of both the complexity of the LCA and the antiquity of the biphasic life cycle. It does not require that extant embryogenesis, including gastrulation, recapitulates evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific role of the hypothalamus in regulating the developmental profile of anterior pituitary (AP) cells remains largely unknown. The present study evaluated hypothalamic contributions to AP cell development, utilizing the technique of hypothalamo-pituitary disconnection (HPD). HPD of fetal sheep or sham surgery was performed at 110 days gestation (d) (n=6 each group; term ~ 147d). Fetuses were removed and pituitaries collected at 110d (no surgery; n=6) or 141d (sham and HPD groups). The impact of HPD on AP cell development was assessed by single-labeled immunofluorescence for five hormones to identify proportions of AP cells expressing each hormone. HPD was associated with a 70% increase (P

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Mast cells (MCs) are related with healing process in chronic inflammatory diseases, although in cutaneous leishmaniasis (CL) its importance is unknown. The aim of this study was to determine the correlation of MC with clinical findings in patients with the localized form of CL. Methods A cohort of 85 patients with CL was evaluated. MCs count was performed in pre-treatment biopsies and correlation with clinical findings and Leishmania species determined by PCR were performed. Results The MCs count in patients with CL caused by Leishmania (V.) braziliensis was 14.3 +/- 9.8 cells/mm(2), and 7.0 +/- 6.5 cells/mm(2) in patients with L. (L.) amazonensis (P < 0.05). The linear regression of MCs count with the age showed a tendency of cell number decreasing, according to ageing of the patient (r(2) = 0.05; P < 0.05). The association of disease`s duration and MCs count was positive (r(2) = 0.11; P < 0.05). There was not any association of MCs count with number of lesions neither with Leishmania antigen expression. The MCs count was higher in patients with earlier healing after treatment (P < 0.05). Conclusion MC can be important in CL and related with healing lesion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recurrence of mucosal leishmaniasis (ML) is frequent, but the causative mechanisms are unknown. Our aim was to compare cellular and cytokine patterns of lesions from ML that evolved to recurrence or cure in order to determine the risk factor associated with recurrence. Lesions were evaluated by immunohistochemistry before and after therapy, and patients were followed-up for five years. Higher levels of CD4(+) T and IFN-gamma-producing cells were detected in active lesions and decreased after therapy. Macrophages and IL-10 were markedly increased in cured patients. Conversely, CD8(+) T and NK cells were higher in relapsed than in cured cases. Notably, a decrease in these cells in addition to decreased IL-10 and IFN-gamma was also observed after therapy. These data suggest that exacerbated CD8(+) activity, in addition to a poor regulatory response, could underlie an unfavorable fate with regard to ML. These markers may be useful for predicting the prognosis of ML in lesion studies. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone In. the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 mu g/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin(-/-) mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH. (c) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Allergic contact dermatitis is the consequence of an immune reaction mediated by T cells against low molecular weight chemicals known as haptens. It is a common condition that occurs in all races and age groups and affects the quality of life of those who present it. The immunological mechanism of this disease has been reviewed in recent decades with significant advance in its understanding. The metabolism and pathway of the haptens as well as the activation and mechanism of action of the cells responsible for both the immune reaction and its completion are discussed in this article.