945 resultados para Swenson, Dick
(Table 5) Representative plagioclase compositions of PCO-phyric chilled margins of ODP Hole 140-504B
Resumo:
Laminated sediment records from the oxygen minimum zone in the Arabian Sea offer unique ultrahigh-resolution archives for deciphering climate variability in the Arabian Sea region. Although numerous analytical techniques are available it has become increasingly popular during the past decade to analyze relative variations of sediment cores' chemical signature by non-destructive X-ray fluorescence (XRF) core scanning. We carefully selected an approximately 5 m long sediment core from the northern Arabian Sea (GeoB12309-5: 24°52.3' N; 62°59.9' E, 956 m water depth) for a detailed, comparative study of high-resolution techniques, namely non-destructive XRF core scanning (0.8 mm resolution) and ICP-MS/OES analysis on carefully selected, discrete samples (1 mm resolution). The aim of our study was to more precisely define suitable chemical elements that can be accurately analyzed and to determine which elemental ratios can be interpretated down to sub-millimeter-scale resolutions. Applying the Student's t-test our results show significantly correlating (1% significance level) elemental patterns for all S, Ca, Fe, Zr, Rb, and Sr, as well as the K/Ca, Fe/Ti and Ti/Al ratios that are all related to distinct lithological changes. After careful consideration of all errors for the ICP analysis we further provide respective factors of XRF Core Scanner software error's underestimation by applying Chi-square-tests, which is especially relevant for elements with high count rates. As demonstrated by these new, ultra-high resolution data core scanning has major advantages (high-speed, low costs, few sample preparation steps) and represents an increasingly required alternative over the time consuming, expensive, elaborative, and destructive wet chemical analyses (e.g., by ICP-MS/OES after acid digestions), and meanwhile also provides high-quality data in unprecedented resolution.
Resumo:
The Arabian Sea off the Pakistan continental margin is characterized by one of the world's largest oxygen minimum zones (OMZ). The lithology and geochemistry of a 5.3 m long gravity core retrieved from the lower boundary of the modern OMZ (956 m water depth) were used to identify late Holocene changes in oceanographic conditions and the vertical extent of the OMZ. While the lower part of the core (535 - 465 cm, 5.04 - 4.45 cal kyr BP, Unit 3) is strongly bioturbated indicating oxic bottom water conditions, the upper part of the core (284 - 0 cm, 2.87 cal kyr BP to present, Unit 1) shows distinct and well-preserved lamination, suggesting anoxic bottom waters. The transitional interval from 465 to 284 cm (4.45 - 2.87 cal kyr BP, Unit 2) contains relicts of lamination which are in part intensely bioturbated. These fluctuations in bioturbation intensity suggest repetitive changes between anoxic and oxic/suboxic bottom-water conditions between 4.45 - 2.87 cal kyr BP. Barium excess (Baex) and total organic carbon (TOC) contents do not explain whether the increased TOC contents found in Unit 1 are the result of better preservation due to low BWO concentrations or if the decreased BWO concentration is a result of increased productivity. Changes in salinity and temperature of the outflowing water from the Red Sea during the Holocene influenced the water column stratification and probably affected the depth of the lower boundary of the OMZ in the northern Arabian Sea. Even if we cannot prove certain scenarios, we propose that the observed downward shift of the lower boundary of the OMZ was also impacted by a weakened Somali Current and a reduced transport of oxygen-rich Indian Central Water into the Arabian Sea, both as a response to decreased summer insolation and the continuous southward shift of the Intertropical Convergence Zone during the late Holocene.
Resumo:
Astronomical tuning of sedimentary records to precise orbital solutions has led to unprecedented resolution in the geological time scale. However, the construction of a consistent astronomical time scale for the Paleocene is controversial due to uncertainties in the recognition of the exact number of 405-kyr eccentricity cycles and accurate correlation between key records. Here, we present a new Danian integrated stratigraphic framework using the land-based Zumaia and Sopelana hemipelagic sections from the Basque Basin and deep-sea records drilled during Ocean Drilling Program (ODP) Legs 198 (Shatsky Rise, North Pacific) and 208 (Walvis Ridge, South Atlantic) that solves previous discrepancies. The new coherent stratigraphy utilises composite images from ODP cores, a new whole-rock d13C isotope record at Zumaia and new magnetostratigraphic data from Sopelana. We consistently observe 11 405-kyr eccentricity cycles in all studied Danian successions. We achieve a robust correlation of bioevents and stable isotope events between all studied sections at the ~100-kyr short-eccentricity level, a prerequisite for paleoclimatic interpretations. Comparison with and subsequent tuning of the records to the latest orbital solution La2011 provides astronomically calibrated ages of 66.022 ± 0.040 Ma and 61.607 ± 0.040 Ma for the Cretaceous-Paleogene (K-Pg) and Danian-Selandian 105 (D-S) boundaries respectively. Low sedimentation rates appear common in all records in the mid-Danian interval, including conspicuous condensed intervals in the oceanic records that in the past have hampered the proper identification of cycles. The comprehensive interbasinal approach applied here reveals pitfalls in time scale construction, filtering techniques in particular, and indicates that some caution and scrutiny has to be applied when building orbital chronologies. Finally, the Zumaia section, already hosting the Selandian Global Boundary Stratotype Section and Point (GSSP), could serve as the global Danian unit stratotype in the future.
Resumo:
A 30-year series (1978-2007) of photographic records were analysed to determine changes in lake ice cover, local (low elevation) and montane (high elevation) snow cover and phenological stages of mountain birch (Betula pubescens ssp. czerepanovii) at the Abisko Scientific Research Station, Sweden. In most cases, the photographic-derived data showed no significant difference in phenophase score from manually observed field records from the same period, demonstrating the accuracy and potential of using weekly repeat photography as a quicker, cheaper and more adaptable tool to remotely study phenology in both biological and physical systems. Overall, increases in ambient temperatures coupled with decreases in winter ice and snow cover, and earlier occurrence of birch foliage, signal a reduction in the length of winter, a shift towards earlier springs and an increase in the length of available growing season in the Swedish sub-arctic.
Resumo:
Cold-water corals (CWC) are widely distributed around the world forming extensive reefs at par with tropical coral reefs. They are hotspots of biodiversity and organic matter processing in the world's deep oceans. Living in the dark they lack photosynthetic symbionts and are therefore considered to depend entirely on the limited flux of organic resources from the surface ocean. While symbiotic relations in tropical corals are known to be key to their survival in oligotrophic conditions, the full metabolic capacity of CWC has yet to be revealed. Here we report isotope tracer evidence for efficient nitrogen recycling, including nitrogen assimilation, regeneration, nitrification and denitrification. Moreover, we also discovered chemoautotrophy and nitrogen fixation in CWC and transfer of fixed nitrogen and inorganic carbon into bulk coral tissue and tissue compounds (fatty acids and amino acids). This unrecognized yet versatile metabolic machinery of CWC conserves precious limiting resources and provides access to new nitrogen and organic carbon resources that may be essential for CWC to survive in the resource-depleted dark ocean.
Resumo:
Altered basalt dikes from Hole 504B were partially melted at 1150°C and 1180°C to determine the composition of the first melts as oceanic Layer 2C is assimilated by a magma chamber. The partial melts are chemically similar to actinolite, the most abundant secondary mineral, but the melts are not simply melted actinolite. High TiO2, P2O5, and K2O abundances of the melts indicate that minor secondary minerals that are enriched in these elements also contribute to the melt. The incorporation of partial melts into a ridge-crest magma chamber may explain the local variability that is sometimes found in ocean ridge basalts that are not readily explained fractional crystallization or partial melting.
Resumo:
The quantity, type, and maturity of the organic matter in Recent through Upper Jurassic sediments from the Falkland Plateau, DSDP Site 511, have been determined. Sediments were investigated for their hydrocarbon potential by organic carbon and Rock-Eval pyrolysis. Kerogen concentrates were prepared and analyzed in reflected and transmitted light to determine vitrinite reflectance and maceral content. Total extractable organic compounds were analyzed for their elemental composition, and the fraction of the nonaromatic hydrocarbons was determined by capillary column gas chromatography and combined gas chromatography/mass spectrometry. Three main classes of organic matter can be determined at DSDP Site 511 by a qualitative and quantitative evaluation of microscopic and geochemical results. The Upper Jurassic to lower Albian black shales contain high amounts of organic matter of dominantly marine origin. The content of terrigenous organic matter increases at the base of the black shales, whereas the shallowest black shales near the Aptian/Albian boundary are transitional in composition, with increasing amounts of inert, partly oxidized organic matter which is the dominant component in all Albian through Tertiary sediments investigated. The organic matter in the black shales has a low level of maturity and has not yet reached the onset of thermal hydrocarbon generation. This is demonstrated by the low amounts of total extractable organic compounds, low percentages of hydrocarbons, and the pattern and composition of nonaromatic hydrocarbons. The observed reflectance of huminite and vitrinite particles (between 0.4% and 0.5% Ro at bottom-hole depth of 632 m) is consistent with this interpretation. Several geochemical parameters indicate, however, a rapid increase in the maturation of organic matter with depth of burial. This appears to result from the relatively high heat flow observed at Site 511. If we relate the level of maturation of the black shales at the bottom of Hole 511 to their present shallow depth of burial, they appear rather mature. On the basis of comparisons with other sedimentary basins of a known geothermal history, a somewhat higher paleotemperature gradient and/or additional overburden are required to give the observed maturity at shallow depth. A comparison with contemporaneous sediments of DSDP Site 361, Cape Basin, which was the basin adjacent and to the north of the Falkland Plateau during the early stages of the South Atlantic Ocean, demonstrates differences in sedimentological features and in the nature of sedimentary organic matter. We interpret these differences to be the result of the different geological settings for Sites 361 and 511.
Resumo:
The Paleocene-Eocene Thermal Maximum (PETM), ca. 55 Ma, was a period of extreme global warming caused by rapid emission of greenhouse gases. It is unknown what ended this episode of greenhouse warming, but high oceanic export productivity over thousands of years (as indicated by high accumulation rates of barium, Ba) may have been a factor in ending this warm period by carbon sequestration. However, Ba has a short oceanic residence time (~10 k.y.), so a prolonged global increase in Ba accumulation rates requires an increase in input of Ba to the ocean, increasing barite saturation. We use a novel proxy for barite saturation (Sr/Ba in marine barite) to demonstrate that the seawater saturation state with respect to barite did not change across the PETM. The observations of increased barite burial, no change in saturation, and the short residence time can be reconciled if Ba burial decreased at continental margin and shelf sites due to widespread occurrence of suboxic conditions, leading to Ba release into the water column, combined with increased biological export production at some pelagic sites, resulting in Ba sink reorganization.