928 resultados para Sudge recycling
Resumo:
This work presents a study of the ambient management in urban centers, considering the ambient perception as element necessary to develop in the population the conscience of the necessity to preserve the environment. For this, the attitudes and behaviors of the community, represented for students of an Institution had been evaluated, so that strategies and actions are traced that come to minimize the ambient degradation and to provide an aggregate sustainable development to the economic development. The objective of this research consists of studying the problematic one of the ambient management in urban centers under the point of view of the awareness, of the ambient perception and of the participation of the population, this because the ambient questions are inserted in the aspects that involve the practical life and the daily one, for what becomes excellent to understand that the environment is a right of all, therefore, must be preserved. The methodology used in this work constitutes in the application of a questionnaire with scales of the type likert contends variables that compose the acts and mannering aspects, beyond a partner-demographic scale. The Chi-square method was used in the analysis statistics de Pearson to verify the dependence of the associations between the partner-demographic 0 variable and the acts and mannering variables. The results point that the academic environment is opportune to deal with the subject, in view of that the ambient preservation goes for all the contents, and that the pupils of today will be able, in the future, in its areas of performance to plan action to safeguard the sustainable development. One concludes that the strategies to manage the environment pass for the awareness of the citizen, therefore when it is educated its attitudes will be more responsible, a time that the ambient concern will be present in its day-by-day. Therefore, the Public Power when planning programs of ambient preservation that comes to promote changes of habits of the population, such as: management of the solid residues generated by the population, recycling, programs of selective collections, ambient education, etc. the local community for the success of its actions will have to be involved
Resumo:
This research refers to the production of green buildings, defined, mainly, based on the use of sources of alternative energies, smaller emission of pollutant, use of recyclable materials, systems of recycling of the waters, maximization of the natural illumination, preservation of green areas or native, and appropriate quality of the internal air. From the conception of those buildings, it appears the needs of evaluating them, creating the methodologies for the evaluation of environmental performance of buildings. In that way, this work can be divided in two moments: the first one when it identifies the methodologies for the evaluation of environmental performance for buildings existents in the literature, defining their categories, criteria and sub-criteria to be appropriate to the reality of the Brazilian Northeast; and the second one when starting from the analysis of the systems of existent evaluation. It defines a methodological base and it generates a new evaluation system, denominated MEDACNE (Methodology of Evaluation of Environmental Acting for Construction in the Northeast). In that moment, the process of framing of the section of the building site is verified under the maintainable optics, stimulated mainly by the pressures of the society - conferences, protocols and agreements. Finally, the proposed methodology was applied in a case study, a residential building, called Maria José Gurgel , located in Natal-RN, Brazil, for its validation. This methodological proposition should increase the patterns environmental places for the production of new buildings, and it will be a reference guide for architects, engineers and planners to develop their constructions considering the criteria of the sustainability. This study made use of bibliographical research in books and specialized magazines and the analysis of the data was realized in an interpretative way
Resumo:
This dissertation conducted in the years 2011 and 2012, an analysis of cooperatives waste pickers in the city of Natal, Rio Grande do Norte, aiming to identify improvements to be implemented to assist the management of waste from the municipality as well as to improve the living conditions of the workers who perform the selective collection, the environmental perspective. This analysis was performed by means of an investigation of the reality in which they live cooperatives and their local representation, using also the law. The research is characterized as a case study of an applied nature, documentary, consultations with the institutions related to the issue of solid waste in the national and local levels; exploratory and descriptive, the main methodological tools technical visits and structured interviews. From these methods was possible to obtain data regarding the organization of cooperatives, environmental perception of the collector of recyclable materials, among other issues. For the analysis of data matrices were used to include comments and method GUT, from which it was possible to identify numerous difficulties faced by recycling cooperatives, and develop proposals for possible improvements in various aspects of their operation, such as infrastructure and production process , which can improve both the waste management and the quality of life of workers involved in the selective collection system city
Resumo:
Amongst the results of the AutPoc Project - Automation of Wells, established between UFRN and Petrobras with the support of the CNPq, FINEP, CTPETRO, FUNPEC, was developed a simulator for equipped wells of oil with the method of rise for continuous gas-lift. The gas-lift is a method of rise sufficiently used in production offshore (sea production), and its basic concept is to inject gas in the deep one of the producing well of oil transform it less dense in order to facilitate its displacement since the reservoir until the surface. Based in the use of tables and equations that condense the biggest number of information on characteristics of the reservoir, the well and the valves of gas injection, it is allowed, through successive interpolations, to simulate representative curves of the physical behavior of the existing characteristic variable. With a simulator that approaches a computer of real the physical conditions of an oil well is possible to analyze peculiar behaviors with very bigger speeds, since the constants of time of the system in question well are raised e, moreover, to optimize costs with assays in field. The simulator presents great versatility, with prominance the analysis of the influence of parameters, as the static pressure, relation gas-liquid, pressure in the head of the well, BSW (Relation Basic Sediments and Water) in curves of request in deep of the well and the attainment of the curve of performance of the well where it can be simulated rules of control and otimization. In moving the rules of control, the simulator allows the use in two ways of simulation: the application of the control saw software simulated enclosed in the proper simulator, as well as the use of external controllers. This implies that the simulator can be used as tool of validation of control algorithms. Through the potentialities above cited, of course one another powerful application for the simulator appears: the didactic use of the tool. It will be possible to use it in formation courses and recycling of engineers
Resumo:
In the last decades there was a concentrate effort of researchers in the search for options to the problem of the continuity of city development and environmental preservation. The recycling and reuse of materials in industry have been considerate as the best option to sustainable development. One of the relevant aspects in this case refers to the rational use of electrical energy. At this point, the role of engineering is to conceive new processes and materials, with the objective of reducing energy consumption and maintaining, at the same time the benefits of the technology. In this context, the objective of the present research is to analyze quantitatively the thermal behavior of walls constructed with concrete blocks which composition aggregates the expanded polystyrene (EPS) reused in the shape of flakes and in the shape of a board, resulting in a “light concrete”. Experiments were conducted, systematically, with a wall (considerate as a standard) constructed with blocks of ordinary concrete; two walls constructed with blocks of light concrete, distinct by the proportion of EPS/sand; a wall of ceramic bricks (“eight holes” type) and a wall with ordinary blocks of cement, in a way to obtain a comparative analysis of the thermal behavior of the systems. Others tests conducted with the blocks were: stress analysis and thermal properties analysis (ρ, cp e k). Based on the results, it was possible to establish quantitative relationship between the concentration (density) of EPS in the constructive elements and the decreasing of the heat transfer rate, that also changes the others thermal properties of the material, as was proved. It was observed that the walls of light concrete presents better thermal behavior compared with the other two constructive systems world wide used. Based in the results of the investigation, there was shown the viability of the use of EPS as aggregate (raw material) in the composition of the concrete, with the objective of the fabrication of blocks to non-structural masonry that works as a thermal insulation in buildings. A direct consequence of this result is the possibility of reduction of the consume of the electrical energy used to climatization of buildings. Other aspect of the investigation that must be pointed was the reuse of the EPS as a raw material to civil construction, with a clear benefit to reducing of environmental problems
Resumo:
Companies involved in kaolin mining and treatment represent an important area of industrial development in Brazil, significantly contribution to the worldwide production of such mineral. As a result, large volumes of kaolin residue are constantly generated and abandoned in the environment, negatively contributing to its preservation. In this scenario, the objective of the present study was to characterize the residue generated from kaolin mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Three compositions were prepared using kaolin residue contents of 10%, 20% and 30%. Samples were uniaxially pressed, fired at 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results showed that the residue basically consisted of kaolinite and successfully replaced raw kaolin in the preparation of ceramic title formulations without significantly affecting the properties of the fired material
Resumo:
Growing corn mixed with forage crops can be an alternative for pasture and Mulch production during relatively dry winters in tropical areas, making no-till feasible in some regions. However, little is known about nutrient dynamics in this cropping system. The objective of the present work was to evaluate K dynamics in a production system in which corn was either grown as a sole crop or mixed with Brachiaria brizantha. In the second year of the experiment, nitrogen rates ranging from 0 to 200 kg ha(-1) were applied to the system. Dry matter yields and potassium contents in the soil, as well as residues and plants were determined at corn planting and harvest. Potassium balance in the system was calculated. Corn grain yield in mixed crop responded up to 200 kg ha(-1) N. The introduction of brachiaria in the system resulted in higher amounts of straw on the soil Surface and higher K recycling. Soil exchangeable K balance showed an excess K for both N rates only in the mixed system, however, when non-exchangeable K was also included in calculations, excess K was found in both mixed and sole corn systems. Large amounts of non-exchangeable K were taken up in the system involving brachiaria, which showed a considerable capacity in recycling K, increasing its contents in the surface soil layer. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A housing unit was built to study the thermal performance, and of material using a composite made of gypsum and EPS ground. We used two techniques of construction, using blocks, and filling on the spot. Two compositions of the composite were studied. The blocks were fixed using conventional mortar. In the technical of filling on the spot were used PET bottles up inside the walls to provide mechanical and thermal resistance. Compression tests were realized according to the ABNT standard of sealing bricks. It is going to be shown an analysis of the thermal comfort through the use of thermocouples placed on the walls of the building, internally and externally. The manufacturing viability of houses, using recyclable materials, through the use of composite materials proposed will be demonstrated. The constructive aspects showing the advantages and disadvantages of the technique used also will be broached. The block used presents structural functions and thermal insulating, is low cost and represents an alternative to the use of EPS and PET bottles which are materials that end up occupying much space in the landfills, giving than an ecologically correct use. The results of thermal analysis shows the thermal comfort provided by the composite by the obtainment of a difference between the internal and external surfaces of the walls more exposed to the sun around 7º C. The average temperature of the air inside the building, around 28.0 º C was below the zone of thermal comfort recommended for countries with hot weather
Resumo:
Crop species with the C-4 photosynthetic pathway are more efficient in assimilating N than C-3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C-4 photosynthetic pathway, and black oat (Arena Strigosa) and triticale (X Triticosecale), with the C-3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha(-1) of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C-4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C-4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.
Resumo:
The process of recycling has been stimulated by the markets for several reasons, mainly on economical and environmental. Several products have been developed from recycled materials that already exist as well as several residues have been studied in different forms of applications. The greater majority of the applications for thermal insulation in the domestic, commercial and industrial systems have been elaborated in the temperature ranges between low to medium reaching up to 180oC. Many materials such as glass wool, rock wool, polystyrene are being used which are aggressive to the environment. Such materials in spite of the effectiveness in the retention of heat flow, they cost more and when discarded take several years to be absorbed by the nature. This way, in order to adapt to a world politics concerning the preservation of the environment, the present study was intended to develop a material composed of natural/biodegradable materials and industrial residues. The development of such a product in the form of a composite material based on tyre scrapes and latex for thermal insulation is presented in this research work. Thermal and physical properties of the tire scrapes as well as latex were studied in order to use them as raw materials for the manufacture of the intended composite to be applied as a thermal insulator in hot and cold systems varying between 0ºC and 200oC, respectively. Composite blankets were manufactured manually, in weight proportions of 1:1 (50:50%); 1:2 (33:67%) and 2:1 (67:33%) (tire scrapes: latex) respectively. Physical, mechanical and thermal properties of the composites were analyzed to obtain data about the viability of using the composite as a thermal insulator. The analyses carried out were based on standards ABNT, ASTM and UL. The maximum temperature obtained for the composite as a thermal insulator was 200ºC, which meets the range of applications that could be used as a thermal insulator in domestic as well as industrial purposes. The experimental results prove that the composite can be used as a thermal insulator on heated or cooled surface
Resumo:
It s presented a solar collector to be used in a system for heating bath water, whose main characteristic is its low cost. The collector consists of five plates of PVC with 10 mm thick, 200 mm in width and 1400mm in length, with an area equal to 1.4 square meters. The plates were connected in parallel to the ends of PVC tubes of 40 mm and 32 mm. The plates were coated on one side with aluminum sheets of soft drinks and beers cans open. The system worked on a thermosiphon and was tested in two configurations: the plates uncoated and coated with aluminum material, to determine the influence of material on the efficiency of the collector. For both configurations was used EPS plates below the surface to minimize heat losses from the botton. The thermal reservoir of the heating system is, also, alternative and low cost, since it was constructed from a polyethylene tank for storing water, with volume of 150 end 200 liters. It will be presented the thermal efficiency, heat loss, water temperature of the thermal reservoir at the end of the process and simulation of baths for a house with four residents. The will be demonstrated thermal, economic and material viability of the proposed collector, whose main innovation is the use of recyclables materials, cans of beer and soft drinks, to increase the temperature of the absorber plate.
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are its low cost and easy manufacturing and assembly. The absorbing surface of the collector is formed by an aluminum plate with eight flaps where they lodge PVC pipes. The catchment area of solar radiation corresponds to 1.3 meters. The collector box was made of wood, is covered by transparent glass and thermal insulation of tire chips and expanded polystyrene (EPS). Absorber tubes were connected in parallel through the use of PVC fittings and fixed to the plate by the use of metal poles and rivets. The entire absorber received paint flat black for better absorption of sunlight. The system worked on a thermosiphon assembly and absorber of the collector has been tested in two configurations: with the tubes facing up, directly exposed to the impact of sunlight and facing down, exchanging heat with the plate by conduction. It was determined the most efficient configuration for the correct purpose. The solar collector was connected to a thermal reservoir, also alternative, low-cost forming the system of solar water heating. We evaluated thermal parameters that proved the viability of the heating system studied
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Companies involved in emerald mining and treatment represent an important area of industrial development in Brazil, with significative contribution to the worldwide production of such mineral. As a result, large volumes of emerald waste are constantly generated and abandoned in the environment, negatively contributing to its preservation. By the other side the interest of the use of mining waste as additive in ceramic products has been growing from researchers in recent years. The ceramic industry is constantly seeking to the marked amplification for the sector and perfecting the quality of the products and to increase the variety of applications. The technology of obtaining of ceramic tiles that uses mining residues assists market niches little explored. In this scenario, the objective of the present study was to characterize the residue generated from emerald mining as well as to assess its potential use as raw material for the production of ceramic tiles. Ceramic mixtures were prepared from raw materials characterized by X-ray fluorescence, X-ray diffraction, particle size analysis and thermal analysis. Five compositions were prepared using emerald residue contents of 0%, 10%, 20%, 30% and 40%. Samples were uniaxially pressed, fired at 1000, 1100 and 1200ºC and characterized aiming at establishing their mineralogical composition, water absorption, apparent porosity, specific mass, linear retraction and modulus of rupture. The results shows that the emerald residue, basically consisted of 73% of (SiO2 + Al2O3) and 17,77% of (MgO + Na2O+ K2O) (that facilitates sintering), can be added to the ceramic tile materials with no detrimental effect on the properties of the sintered products
Resumo:
It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are low cost and easy manufacturing and assembly. The system operates under natural convection or thermosiphon. The absorbing surface of the collector is formed by twelve PVC pipes of 25 mm outside diameter connected in parallel via connections in T of the same material. The tubes were covered with absorbing fins made with recycled aluminum cans. We studied eight settings between absorber plate, thermal insulating EPS boards and thermal reservoirs 150 and 200 liters. It was determined the most efficient configuration for the correct purpose. We evaluated thermal parameters that proved the viability of the heating system studied