932 resultados para Subterranean rodent
Resumo:
Two hemotropic mycoplasmas have been recognized in cats, Mycoplasma haemofelis and "Candidatus Mycoplasma haemominutum." We recently described a third feline hemoplasma species, designated "Candidatus Mycoplasma turicensis," in a Swiss cat with hemolytic anemia. This isolate induced anemia after experimental transmission to two specific-pathogen-free cats and analysis of the 16S rRNA gene revealed its close relationship to rodent hemotropic mycoplasmas. The agent was recently shown to be prevalent in Swiss pet cats. We sought to investigate the presence and clinical importance of "Candidatus Mycoplasma turicensis" infection in pet cats outside of Switzerland and to perform the molecular characterization of isolates from different countries. A "Candidatus Mycoplasma turicensis"-specific real-time PCR assay was applied to blood samples from 426 United Kingdom (UK), 147 Australian, and 69 South African pet cats. The 16S rRNA genes of isolates from different countries were sequenced and signalment and laboratory data for the cats were evaluated for associations with "Candidatus Mycoplasma turicensis" infection. Infections were detected in samples from UK, Australian, and South African pet cats. Infection was associated with the male gender, and "Candidatus Mycoplasma haemominutum" and M. haemofelis coinfection. Coinfected cats exhibited significantly lower packed cell volume (PCV) values than uninfected cats. Phylogenetic analyses revealed that some Australian and South African "Candidatus Mycoplasma turicensis" isolates branched away from the remaining isolates. In summary, "Candidatus Mycoplasma turicensis" infection in pet cats exists over a wide geographical area and significantly decreased PCV values are observed in cats coinfected with other feline hemoplasmas.
Resumo:
Two feline hemotropic mycoplasma spp. (aka hemoplasma) have previously been recognized. We recently discovered a third novel species in a cat with hemolytic anemia, designated 'Candidatus Mycoplasma turicensis', which is closely related to rodent haemoplasmas. This novel species induced anemia after experimental transmission to two SPF cats. Three quantitative real-time PCR assays were newly designed and applied to an epidemiological study surveying the Swiss pet cat population. Blood samples from 713 healthy and ill cats were analyzed. Up to 104 parameters per cat (detailed questionnaire, case history, laboratory parameters and retroviral infections) were evaluated. 'Candidatus Mycoplasma haemominutum' infection was more prevalent (8.5%) than Mycoplasma haemofelis (0.5%) and 'Candidatus Mycoplasma turicensis' (1%). Hemoplasma infections were associated with male gender, outdoor access, and old age, but not with disease or anemia. Infections were more frequently found in the South and West of Switzerland. Several hemoplasma infected cats, some acutely infected, others co-infected with FIV or FeLV, showed hemolytic anemia indicating that additional factors might play a role in the pathogenesis of the disease.
Resumo:
The straightforward production and dose-controlled administration of protein therapeutics remain major challenges for the biopharmaceutical manufacturing and gene therapy communities. Transgenes linked to HIV-1-derived vpr and pol-based protease cleavage (PC) sequences were co-produced as chimeric fusion proteins in a lentivirus production setting, encapsidated and processed to fusion peptide-free native protein in pseudotyped lentivirions for intracellular delivery and therapeutic action in target cells. Devoid of viral genome sequences, protein-transducing nanoparticles (PTNs) enabled transient and dose-dependent delivery of therapeutic proteins at functional quantities into a variety of mammalian cells in the absence of host chromosome modifications. PTNs delivering Manihot esculenta linamarase into rodent or human, tumor cell lines and spheroids mediated hydrolysis of the innocuous natural prodrug linamarin to cyanide and resulted in efficient cell killing. Following linamarin injection into nude mice, linamarase-transducing nanoparticles impacted solid tumor development through the bystander effect of cyanide.
Resumo:
The rodent model of myocardial infarction (MI) is extensively used in heart failure studies. However, long-term follow-up of echocardiographic left ventricular (LV) function parameters such as the myocardial performance index (MPI) and its ratio with the fractional shortening (LVFS/MPI) has not been validated in conjunction with invasive indexes, such as those derived from the conductance catheter (CC). Sprague-Dawley rats with left anterior descending coronary artery ligation (MI group, n = 9) were compared with a sham-operated control group (n = 10) without MI. Transthoracic echocardiography (TTE) was performed every 2 wk over an 8-wk period, after which classic TTE parameters, especially MPI and LVFS/MPI, were compared with invasive indexes obtained by using a CC. Serial TTE data showed significant alterations in the majority of the noninvasive functional and structural parameters (classic and novel) studied in the presence of MI. Both MPI and LVFS/MPI significantly (P < 0.05 for all reported values) correlated with body weight (r = -0.58 and 0.76 for MPI and LVFS/MPI, respectively), preload recruitable stroke work (r = -0.61 and 0.63), LV end-diastolic pressure (LVEDP) (r = 0.82 and -0.80), end-diastolic volume (r = 0.61 and -0.58), and end-systolic volume (r = 0.46 and -0.48). Forward stepwise linear regression analysis revealed that, of all variables tested, LVEDP was the only independent determinant of MPI (r = 0.84) and LVFS/MPI (r = 0.83). We conclude that MPI and LVFS/MPI correlate strongly and better than the classic noninvasive TTE parameters with established, invasively assessed indexes of contractility, preload, and volumetry. These findings support the use of these two new noninvasive indexes for long-term analysis of the post-MI LV remodeling.
Resumo:
OBJECTIVES: Bone formation during guided tissue regeneration is a tightly regulated process involving cells, extracellular matrix and growth factors. The aims of this study were (i) to examine the expression of cyclooxygenase-2 (COX-2) during bone regeneration and (ii) the effects of selective COX-2 inhibition on osseous regeneration and growth factor expression in the rodent femur model. MATERIAL AND METHODS: A standardized transcortical defect of 5 x 1.5 mm was prepared in the femur of 12 male rats and a closed half-cylindrical titanium chamber was placed over the defect. The expression of COX-2 and of platelet-derived growth factor-B (PDGF-B), bone morphogenetic protein-6 (BMP-6) and insulin-like growth factor-I/II (IGF-I/II) was analyzed at Days 3, 7, 21 and 28 semiquantitatively by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of COX-2 inhibition by intraperitoneal injection of NS-398 (3 mg/kg/day) were analyzed in five additional animals sacrificed at Day 14. RESULTS: Histomorphometry revealed that new bone formation occurred in the cortical defect area as well as in the supracortical region, i.e. region within the chamber by Day 7 and increased through Day 28. Immunohistochemical evidence of COX-2 and PDGF-B levels were observed early (i.e. Day 3) and decreased rapidly by Day 7. BMP-6 expression was maximal at Day 3 and slowly declined by Day 28. In contrast, IGF-I/II expression gradually increased during the 28-day period. Systemic administration NS-398 caused a statistically significant reduction (P<0.05) in new bone formation (25-30%) and was associated with a statistically significant reduction in BMP-6 protein and mRNA expression (50% and 65% at P<0.05 and P<0.01, respectively). PDGF-B mRNA or protein expression was not affected by NS-398 treatment. CONCLUSION: COX-2 inhibition resulted in reduced BMP-6 expression and impaired osseous regeneration suggesting an important role for COX-2-induced signaling in BMP synthesis and new bone formation.
Resumo:
Fibronectin type II (Fn2) module-containing proteins in the male genital tract are characterized by different numbers of Fn2 modules. Predominantly two classes exist which are distinct by having either two or four Fn2 modules. Minor variants with three Fn2 modules were also found in the human and the porcine epididymis. To reveal their relationship, mRNAs and proteins of representatives of these classes were studied in human, in Sus scrofa, and in rodents. Adult boars expressed members of both classes, i.e. ELSPBP1 and pB1, in subsequent regions of the epididymis, and both were under androgenic control. Human and rodent epididymides, on the other hand, alternatively contained only representatives of one of these two classes, i.e. ELSPBP1 in the human and two different pB1-related counterparts in rodents. ELSPBP1 and pB1-related genomic sequences were closely linked in chromosomal regions HSA 19q and SSC 6 q11-q21; conserved synteny between these regions is well established. On the other hand, in a syntenic region on mouse chromosome 7, ELSPBP1-related sequences were lacking. Tight binding to the sperm membrane via a choline-mediated mechanism was a common feature of the two classes of Fn2-module proteins, suggesting related function(s). However, differences in their regionalized expression patterns along the male genital tract as well as in association sites on the sperm surface suggested a species-specific sequential order in sperm binding.
Resumo:
Excitatory neurons at the level of cortical layer 4 in the rodent somatosensory barrel field often display a strong eccentricity in comparison with layer 4 neurons in other cortical regions. In rat, dendritic symmetry of the 2 main excitatory neuronal classes, spiny stellate and star pyramid neurons (SSNs and SPNs), was quantified by an asymmetry index, the dendrite-free angle. We carefully measured shrinkage and analyzed its influence on morphological parameters. SSNs had mostly eccentric morphology, whereas SPNs were nearly radially symmetric. Most asymmetric neurons were located near the barrel border. The axonal projections, analyzed at the level of layer 4, were mostly restricted to a single barrel except for those of 3 interbarrel projection neurons. Comparing voxel representations of dendrites and axon collaterals of the same neuron revealed a close overlap of dendritic and axonal fields, more pronounced in SSNs versus SPNs and considerably stronger in spiny L4 neurons versus extragranular pyramidal cells. These observations suggest that within a barrel dendrites and axons of individual excitatory cells are organized in subcolumns that may confer receptive field properties such as directional selectivity to higher layers, whereas the interbarrel projections challenge our view of barrels as completely independent processors of thalamic input.
Resumo:
Ca(v)2.1 Ca(2+) channels (P/Q-type), which participate in various key roles in the CNS by mediating calcium influx, are extensively spliced. One of its alternatively-spliced exons is 37, which forms part of the EF hand. The expression of exon 37a (EFa form), but not exon 37b (EFb form), confers the channel an activity-dependent enhancement of channel opening known as Ca(2+)-dependent facilitation (CDF). In this study, we analyzed the trend of EF hand splice variant distributions in mouse, rat and human brain tissues. We observed a developmental switch in rodents, as well as an age and gender bias in human brain tissues, suggestive of a possible role of these EF hand splice variants in neurophysiological specialization. A parallel study performed on rodent brains showed that the data drawn from human and rodent tissues may not necessarily correlate in the process of aging.
Resumo:
Because of superior soft-tissue contrast compared to other imaging techniques, non-invasive abdominal magnetic resonance imaging (MRI) is ideal for monitoring organ regeneration, tissue repair, cancer stage, and treatment effects in a wide variety of experimental animal models. Currently, sophisticated MR protocols, including technically demanding procedures for motion artefact compensation, achieve an MRI resolution limit of < 100 microm under ideal conditions. However, such a high spatial resolution is not required for most experimental rodent studies. This article describes both a detailed imaging protocol for MR data acquisition in a ubiquitously and commercially available 1.5 T MR unit and 3-dimensional volumetry of organs, tissue components, or tumors. Future developments in MR technology will allow in vivo investigation of physiological and pathological processes at the cellular and even the molecular levels. Experimental MRI is crucial for non-invasive monitoring of a broad range of biological processes and will further our general understanding of physiology and disease.
Resumo:
Resistance to melarsoprol and pentamidine was induced in bloodstream-form Trypanosoma brucei rhodesiense STIB 900 in vitro, and drug sensitivity was determined for melarsoprol, pentamidine and furamidine. The resistant populations were also inoculated into immunosuppressed mice to verify infectivity and to monitor whether rodent passage selects for clones with altered drug sensitivity. After proliferation in the mouse, trypanosomes were isolated and their IC(50) values to the three drugs were determined. To assess the stability of drug-induced resistance, drug pressure was ceased for 2 months and the drug sensitivity was determined again. Resistance was stable, with a few exceptions that are discussed. Drug IC(50)s indicated cross-resistance among all drugs, but to varying extents: resistance of the melarsoprol-selected and pentamidine-selected trypanosomes to pentamidine was the same, but the pentamidine-selected trypanosome population showed lower resistance to melarsoprol than the melarsoprol-selected trypanosomes. Interestingly, both resistant populations revealed the same intermediate cross-resistance to furamidine. Resistant trypanosome populations were characterised by molecular means, referring to the status of the TbAT1 gene. The melarsoprol-selected population apparently had lost TbAT1, whereas in the pentamidine-selected trypanosome population it was still present.
Resumo:
This study aimed at isolating Trypanosoma brucei gambiense from human African trypanosomiasis (HAT) patients from south Sudan. Fifty HAT patients identified during active screening surveys were recruited, most of whom (49/50) were in second-stage disease. Blood and cerebrospinal fluid samples collected from the patients were cryopreserved using Triladyl as the cryomedium. The samples were stored at -150 degrees C in liquid nitrogen vapour in a dry shipper. Eighteen patient stabilates could be propagated in immunosuppressed Mastomys natalensis and/or SCID mice. Parasitaemia was highest in SCID mice. Further subpassages in M. natalensis increased the virulence of the trypanosomes and all 18 isolates recovered from M. natalensis or SCID mice became infective to other immunosuppressed mouse breeds. A comparison of immunosuppressed M. natalensis and Swiss White, C57/BL and BALB/c mice demonstrated that all rodent breeds were susceptible after the second subpassage and developed a parasitaemia >10(6)/ml by Day 5 post infection. The highest parasitaemias were achieved in C57/BL and BALB/c mice. These results indicate that propagation of T. b. gambiense isolates after initial isolation in immunosuppressed M. natalensis or SCID mice can be done in a range of immunosuppressed rodents.
Resumo:
The inhibitor cystine-knot motif identified in the structure of CSTX-1 from Cupiennius salei venom suggests that this toxin may act as a blocker of ion channels. Whole-cell patch-clamp experiments performed on cockroach neurons revealed that CSTX-1 produced a slow voltage-independent block of both mid/low- (M-LVA) and high-voltage-activated (HVA) insect Ca(v) channels. Since C. salei venom affects both insect as well as rodent species, we investigated whether Ca(v) channel currents of rat neurons are also inhibited by CSTX-1. CSTX-1 blocked rat neuronal L-type, but no other types of HVA Ca(v) channels, and failed to modulate LVA Ca(v) channel currents. Using neuroendocrine GH3 and GH4 cells, CSTX-1 produced a rapid voltage-independent block of L-type Ca(v) channel currents. The concentration-response curve was biphasic in GH4 neurons and the subnanomolar IC(50) values were at least 1000-fold lower than in GH3 cells. L-type Ca(v) channel currents of skeletal muscle myoballs and other voltage-gated ion currents of rat neurons, such as I(Na(v)) or I(K(v)) were not affected by CSTX-1. The high potency and selectivity of CSTX-1 for a subset of L-type channels in mammalian neurons may enable the toxin to be used as a molecular tool for the investigation of this family of Ca(v) channels.
Resumo:
Before entering the central nervous system (CNS) immune cells have to penetrate any one of its barriers, namely either the endothelial blood-brain barrier, the epithelial blood-cerebrospinal fluid barrier or the tanycytic barrier around the circumventricular organs, all of which maintain homeostasis within the CNS. The presence of these barriers in combination with the lack of lymphatic vessels and the absence of classical MHC-positive antigen presenting cells characterizes the CNS as an immunologically privileged site. In multiple sclerosis a large number of inflammatory cells gains access to the CNS parenchyma. Studies performed in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis, have enabled us to understand some of the molecular mechanisms involved in immune cell entry into the CNS. In particular, the realization that /alpha4-integrins play a predominant role in leukocyte trafficking to the CNS has led to the development of a novel drug for the treatment of relapsing-remitting multiple sclerosis, which targets /alpha4-integrin mediated immune cell migration to the CNS. At the same time, the involvement of other adhesion and signalling molecules in this process remains to be investigated and novel molecules contributing to immune cell entry into the CNS are still being identified. The entire process of immune cell trafficking into the CNS is strictly controlled by the brain barriers not only under physiological conditions but also during neuroinflammation, when some barrier properties are lost. Thus, immune cell entry into the CNS critically depends on the unique characteristics of the brain barriers maintaining CNS homeostasis.
Resumo:
BACKGROUND/AIMS: The integrin alphavbeta6 promotes proliferation of specialized epithelia and acts as a receptor for the activation of latent TGFbeta1. We studied alphavbeta6 expression in experimental and human liver fibrosis and the potential of its pharmacological inhibition for treatment of hepatic fibrosis. METHODS: alphavbeta6 expression was studied by quantitative PCR and immunohistochemistry in rats with cirrhosis due to bile duct ligation (BDL), administration of thioacetamide (TAA), in Mdr2(Abcb4)(-/-) mice with spontaneous biliary fibrosis, and in livers of patients with chronic hepatitis C (n=79) and end-stage liver disease due to various etiologies (n=18). The effect of a selective alphavbeta6 inhibitor was evaluated in Mdr2(Abcb4)(-/-) mice with ongoing fibrogenesis. RESULTS: Integrin beta6 mRNA increased with fibrosis stage in hepatitis C and was upregulated between 25- and 100-fold in TAA- and BDL-induced cirrhosis, in Mdr2(Abcb4)(-/-) mice and in human end-stage liver disease. alphavbeta6 protein was absent in normal livers and expressed de novo on (activated) bile duct epithelia and transitional hepatocytes. A single dose of the alphavbeta6 inhibitor injected into Mdr2(Abcb4)(-/-) mice significantly induced profibrolytic matrix metalloproteinases (MMP)-8 and -9 after 3 h, with a corresponding increase in extracellular matrix-degrading activities. In parallel profibrogenic transcripts (procollagen alpha1(I), TGFbeta2, and MMP-2) showed a trend of downregulation. CONCLUSIONS: (1) Integrin alphavbeta6 is induced de novo in rodent and human liver fibrosis, where it is expressed on activated bile duct epithelia and (transitional) hepatocytes during fibrosis progression. (2) In vivo a single dose of a small molecule alphavbeta6 inhibitor induced antifibrogenic and profibrolytic genes and activities, suggesting alphavbeta6 is a unique target for treatment of liver fibrosis.
Resumo:
The hypothalamo-pituitary-adrenal axis shows functional changes in alcoholics, with raised glucocorticoid release during alcohol intake and during the initial phase of alcohol withdrawal. Raised glucocorticoid concentrations are known to cause neuronal damage after withdrawal from chronic alcohol consumption and in other conditions. The hypothesis for these studies was that chronic alcohol treatment would have differential effects on corticosterone concentrations in plasma and in brain regions. Effects of chronic alcohol and withdrawal on regional brain corticosterone concentrations were examined using a range of standard chronic alcohol treatments in two strains of mice and in rats. Corticosterone was measured by radioimmunoassay and the identity of the corticosterone extracted from brain was verified by high performance liquid chromatography and mass spectrometry. Withdrawal from long term (3 weeks to 8 months) alcohol consumption induced prolonged increases in glucocorticoid concentrations in specific regions of rodent brain, while plasma concentrations remained unchanged. This effect was seen after alcohol administration via drinking fluid or by liquid diet, in both mice and rats and in both genders. Shorter alcohol treatments did not show the selective effect on brain glucocorticoid levels. During the alcohol consumption the regional brain corticosterone concentrations paralleled the plasma concentrations. Type II glucocorticoid receptor availability in prefrontal cortex was decreased after withdrawal from chronic alcohol consumption and nuclear localization of glucocorticoid receptors was increased, a pattern that would be predicted from enhanced glucocorticoid type II receptor activation. This novel observation of prolonged selective increases in brain glucocorticoid activity could explain important consequences of long term alcohol consumption, including memory loss, dependence and lack of hypothalamo-pituitary responsiveness. Local changes in brain glucocorticoid levels may also need to be considered in the genesis of other mental disorders and could form a potential new therapeutic target.