881 resultados para Substrates of occupation
Resumo:
Epitaxial growth of SiC on complex substrates was carried out at substrate temperature from 1200 degreesC to 1400 degreesC. Three kinds of new complex substrates, c-plane sapphire, AlN/sapphire, and GaN/AlN/sapphire, were used in this study. We obtained a growth rate in the range of 1-6 mum/h. Thick (6 mum) SIC epitaxial layers with no cracks were successfully obtained on AlN/sapphire and GaN/AlN/sapphire substrates. X-ray diffraction patterns have confirmed that single-crystal SiC was obtained on these complex substrates. Analysis of optical transmission spectra of the SIC grown on sapphire substrates shows the lowest-energy gap near 2.2 eV, which is the value for cubic SiC. The undoped SIC showed n-type electrical conductivity. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Structural characteristics of cubic GaN epilayers grown on GaAs(001) were studied using X-ray double-crystal diffraction technique. The structure factors of cubic GaN(002) and (004) components are approximately identical. However, the integrated intensities of the rocking curve for cubic (002) components are over five times as those of (004) components. The discrepancy has been interpreted in detail considering other factors. In the conventional double crystal rocking curve, the peak broadening includes such information caused by the orientation distribution (mosaicity) and the distribution of lattice spacing. These two kinds of distributions can be distinguished by the triple-axis diffraction in which an analyser crystal is placed in front of the detector. Moreover, the peak broadening was analysed by reciprocal lattice construction and Eward sphere. By using triple-axis diffraction of cubic (002) and (113) components, domain size and dislocation density were estimated. The fully relaxed lattice parameter of cubic GaN was determined to be about 0.451 +/- 0.001nm.
Resumo:
Semi-insulating gallium arsenide single crystal grown in space has been used in fabricating low noise field effect transistors and analog switch integrated circuits by the direct ion-implantation technique. All key electrical properties of these transistors and integrated circuits have surpassed those made from conventional earth-grown gallium arsenide. This result shows that device-grade space-grown semiconducting single crystal has surpassed the best terrestrial counterparts. (C) 2001 American Institute of Physics.
Resumo:
Strained InAs nanostructures have been grown by solid-source molecular beam epitaxy in In0.52Al0.48As matrix on different InP substrate surfaces ((0 0 1) and (1 1 n)A/B (n = 1 - 5)). The morphology of the nanostructures was characterized using atomic force microscopy (AFM). The AFM results reveal interesting differences in the size, shape, and alignment of the nanostructures between different oriented surfaces. It was found that some faceted nanostructures tend to form on A-type surfaces, the shape and the alignment of these nanostructures show clear dependence on the substrate orientation. Samples grown on (0 0 1) and B-type surfaces showed preferentially dense round dots. Dots formed on (1 1 3)B, (1 1 3)B and (1 1 5)B surfaces have a higher dot density and size homogeneity, which shows a potential for the production of high-quality and customized self-assembled quantum dots for photonics applications. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The effects of InP substrate orientations on self-assembled InAs quantum dots (QDs) have been investigated by molecular beam epitaxy (MBE). A comparison between atomic force microscopy (AFM) and photoluminescence (PL) spectra shows that a high density of smaller InAs islands can be obtained by using such high index substrates. On the other hand, by introducing a lattice-matched underlying In0.52Al0.24Ga0.24As layer, the InAs QDs can be much more uniform in size and have a great improvement in PL properties. More importantly, 1.55-mu m luminescence at room temperature (RT) can be realized in InAs QDs deposited on (001) InP substrate with underlying In0.52Al0.24Ga0.24As layer. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, we investigated the self-assembled quantum dots formed on (100) and (N11)B (N = 2, 3, 4, 5) InP substrates by molecular beam epitaxy (MBE). Two kinds of ternary QDs (In0.9Ga0.1As and In0.9Al0.1As QDs) are grown on the above substrates; Transmission electron microscopy (TEM) and photoluminescence (PL) results confirm QDs formation for all samples. The PL spectra reveal obvious differences in integral luminescence, peak position, full-width at half-maximum and peak shape between different oriented surfaces. Highest PL integral intensity is observed from QDs on (411)B surfaces, which shows a potential for improving the optical properties of QDs by using high-index surface. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Cubic GaN(c-GaN) films are grown on GaAs(001) substrates by metalorganic chemical vapor deposition (MOCVD). Two GaN samples were grown with different buffer layer, the deposition time of each was 1 and 3 min, respectively. 4-circle X-ray double crystal diffraction (XRDCD) was used to study the secondary crystallographic phases presented in the c-GaN films. The phase composition of the epilayers was determined by X-ray reciprocal space mapping. The intensities of the c-GaN(002) and h-GaN(10 (1) over bar 1) planes detected in the mapping were investigated by omega scans. The content of the hexagonal phase inclusions in the c-GaN films was calculated to about 1.6 and 7.9%, respectively. The thicker buffer layer is not preferable for growing high quality pure c-GaN films. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
In this letter, we investigated the effect of the buffer layer growth conditions on the secondary hexagonal phase content in cubic GaN films on GaAs(0 0 1) substrate. The reflection high-energy electron diffraction (RHEED) pattern of the low-temperature GaN buffer layers shows that both the deposition temperature and time are important in obtaining a smooth surface. Four-circle X-ray double-crystal diffraction (XRDCD) reciprocal space mapping was used to study the hexagonal phase inclusions in the cubic GaN (c-GaN) films grown on the buffer layers. The calculation of the volume contents of the hexagonal phase shows that higher temperature and longer time deposition of the buffer layer is not preferable for growing pure c-GaN film. Under optimized condition, 47 meV FWHM of near band gap emission of the c-GaN film was achieved. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Cubic InxGa1-xN films were successfully grown on GaAs(001) substrates by metalorganic chemical-vapor deposition. The values of x content ranging from 0.10 to 0.24 obtained at different growth conditions were measured by double-crystal x-ray diffraction (XRD). The perpendicular and parallel elastic strain of the In0.2Ga0.8N layer, epsilon(perpendicular to)=0.4% and epsilon(parallel to)=-0.4% for GaN and epsilon(perpendicular to)=0.37% and epsilon(parallel to)=-0.37% for InGaN, respectively, were derived using the XRD measurements. The inhomogeneous strain and the average grain size of the In0.2Ga0.8N/GaN films were also studied by XRD. Photoluminescence spectra were used to measure the optical characterization of the InxGa1-xN thin films with different In composition, and the near-band-edge emission dependence of cubic InxGa1-xN on the x value is nearly linear with In content x less than or equal to 0.24. (C) 2000 American Institute of Physics. [S0021-8979(00)03908-6].
Resumo:
InxGa1-xAs self-organized quantum dots with x=1.0, 0.5, and 0.35 have been grown by molecular beam epitaxy. The areal density, distribution, and shapes have been found to be dependent on x. The dot shape changes from a round shape for x=1.0 to an elliptical shape for x less than or equal to 0.5. The major axis and minor axis of the elliptical InxGa1-xAs dots are along the [(1) over bar 10] and [110] directions, respectively. The ordering phenomenon is also discussed. It is suggested that the dot-dot interaction may play important roles in the self-organization process. (C) 2000 American Institute of Physics. [S0021-8979(00)10701-7].
Resumo:
The room temperature Raman spectra of the Ga(0.5)Al(0.5)AS and the In0.52Al0.48As epilayer grown on [n11]-oriented substrates were measured in various back scatterng geometries, The relative intensity of TO modes and LO modes in those samples shows a regular Variation with differently oriented substrates in the experiments. By comparing experimental data with Raman scattering selection rules for the zincblende structure epilayer grown on [n11]-oriented substrates, it was found that the present calculations are in good agreement with the experimental results.
Resumo:
In this paper, InGaAs quantum dots with an adjusting InGaAlAs layer underneath are grown on (n 1 1)A/B (n = 2-5) and the reference (1 0 0) substrates by molecular beam epitaxy. Small and dense InGaAs quantum dots are formed on (1 0 0) and (n 1 1)B substrates. A comparative study by atomic force microscopy shows that the alignment and uniformity for InGaAs quantum dots are greatly improved on(5 1 1)B but deteriorated on (3 1 1)B surface, demonstrating the great influence of the buried InGaAlAs layer. There is an increase in photoluminescence intensity and a decrease in the full-width at half-maximum when n varies from 2 to 5. Quantum dots formed on (3 1 1)A and (5 1 1)A surfaces are large and random in distribution, and no emission from these dots can be detected. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Photoluminescence (PL) spectroscopy and carrier lifetime measurement has been used to characterize optical properties of defects in the low-temperature (LT) grown GaAs/AlGaAs multiple quantum well structures. Two sets of samples were grown at 400 degrees C by molecular beam epitaxy on nominal (001) and miscut [4 degrees off (001) towards (111) A] GaAs substrates, respectively. After growth, samples were subjected to 30 s rapid thermal annealing at 600-800 degrees C. It is found that after annealing, two defect-related PL features appear in the samples grown on nominal (001) GaAs substrates, but not in those grown on miscut (001) GaAs substrates. The carrier lifetimes are about 31 and 5 ps in as-grown samples grown on nominal and miscut (001) GaAs substrates, respectively. The different PL spectra and carrier lifetimes in two sets of samples are attributed to different structures of the As-Ga-like defects formed during LT growth. (C) 1999 American Institute of Physics. [S0003-6951(99)00230-2].
Resumo:
SiC was grown on Si (100) substrates oriented and off-oriented by 2-5 degrees towards [011] with simultaneous supply of C2H4 and S2H6 at 1050 degrees C. SiC formed during removal of oxide could be removed at 1150 degrees C. Twinned growth occurred on both oriented and off-oriented substrates during carbonization, but fewer twins formed on the off-oriented substrate than that on the oriented substrate. In SiC growth process, twinned growth continued on the off-oriented substrate whereas twinned growth stopped and single crystal SiC with double-domain (2 x 1) superstructure formed on the oriented substrate. SiC single crystal could grow on a carbonized twinned buffer layer. Obvious SiC LO and TO phonon modes were observed with Raman spectroscopy in the epilayer grown on the oriented substrate. The surface of the epilayer grown on the oriented substrate was smooth, while there was a high density of islands on the epilayer grown on the off-oriented substrate. The film grown on the oriented substrate is superior than that grown on the off-oriented substrate. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Structural and optical investigations of InAs QDs grown on GaAs (3 1 1)A by molecular beam epitaxy (MBE) were reported. InAs/GaAs (3 1 1)A QDs with nonconventional, faceted, arrowhead-like shapes aligned in the [ - 2 3 3] direction have been disclosed by AFM image. Low defect and dislocation density on the QDs interfaces were indicated by the linear dependence of photoluminescence (PL) intensity on the excitation power. The fast red shift of PL energy and the monotonic decrease of FWHM with increasing temperature were observed and explained by carriers being thermally activated to the energy barrier produced by the wetting layer and then retrapped and recombined in energetically low-lying QDs states. (C) 1999 Elsevier Science B.V. All rights reserved.