999 resultados para Structures de données


Relevância:

20.00% 20.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are the largest family of proteins within the human genome. They consist of seven transmembrane (TM) helices, with a N-terminal region of varying length and structure on the extracellular side, and a C-terminus on the intracellular side. GPCRs are involved in transmitting extracellular signals to cells, and as such are crucial drug targets. Designing pharmaceuticals to target GPCRs is greatly aided by full-atom structural information of the proteins. In particular, the TM region of GPCRs is where small molecule ligands (much more bioavailable than peptide ligands) typically bind to the receptors. In recent years nearly thirty distinct GPCR TM regions have been crystallized. However, there are more than 1,000 GPCRs, leaving the vast majority of GPCRs with limited structural information. Additionally, GPCRs are known to exist in a myriad of conformational states in the body, rendering the static x-ray crystal structures an incomplete reflection of GPCR structures. In order to obtain an ensemble of GPCR structures, we have developed the GEnSeMBLE procedure to rapidly sample a large number of variations of GPCR helix rotations and tilts. The lowest energy GEnSeMBLE structures are then docked to small molecule ligands and optimized. The GPCR family consists of five subfamilies with little to no sequence homology between them: class A, B1, B2, C, and Frizzled/Taste2. Almost all of the GPCR crystal structures have been of class A GPCRs, and much is known about their conserved interactions and binding sites. In this work we particularly focus on class B1 GPCRs, and aim to understand that family’s interactions and binding sites both to small molecules and their native peptide ligands. Specifically, we predict the full atom structure and peptide binding site of the glucagon-like peptide receptor and the TM region and small molecule binding sites for eight other class B1 GPCRs: CALRL, CRFR1, GIPR, GLR, PACR, PTH1R, VIPR1, and VIPR2. Our class B1 work reveals multiple conserved interactions across the B1 subfamily as well as a consistent small molecule binding site centrally located in the TM bundle. Both the interactions and the binding sites are distinct from those seen in the more well-characterized class A GPCRs, and as such our work provides a strong starting point for drug design targeting class B1 proteins. We also predict the full structure of CXCR4 bound to a small molecule, a class A GPCR that was not closely related to any of the class A GPCRs at the time of the work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis consists of two independent chapters. The first chapter deals with universal algebra. It is shown, in von Neumann-Bernays-Gӧdel set theory, that free images of partial algebras exist in arbitrary varieties. It follows from this, as set-complete Boolean algebras form a variety, that there exist free set-complete Boolean algebras on any class of generators. This appears to contradict a well-known result of A. Hales and H. Gaifman, stating that there is no complete Boolean algebra on any infinite set of generators. However, it does not, as the algebras constructed in this chapter are allowed to be proper classes. The second chapter deals with positive elementary inductions. It is shown that, in any reasonable structure ᶆ, the inductive closure ordinal of ᶆ is admissible, by showing it is equal to an ordinal measuring the saturation of ᶆ. This is also used to show that non-recursively saturated models of the theories ACF, RCF, and DCF have inductive closure ordinals greater than ω.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This partial translation of a longer article describes the phenomenon of ”Blasensand”. Blasensand is formed when sedimentation of dried out sand is suddenly flooded from above. A more detailed explanation of Blasensand is given in this translated part of the paper.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

EL proyecto estudia y analiza la estructura de cuatro bosques en el monte Chortiatis, Grecia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combinatorial configurations known as t-designs are studied. These are pairs ˂B, ∏˃, where each element of B is a k-subset of ∏, and each t-design occurs in exactly λ elements of B, for some fixed integers k and λ. A theory of internal structure of t-designs is developed, and it is shown that any t-design can be decomposed in a natural fashion into a sequence of “simple” subdesigns. The theory is quite similar to the analysis of a group with respect to its normal subgroups, quotient groups, and homomorphisms. The analogous concepts of normal subdesigns, quotient designs, and design homomorphisms are all defined and used.

This structure theory is then applied to the class of t-designs whose automorphism groups are transitive on sets of t points. It is shown that if G is a permutation group transitive on sets of t letters and ф is any set of letters, then images of ф under G form a t-design whose parameters may be calculated from the group G. Such groups are discussed, especially for the case t = 2, and the normal structure of such designs is considered. Theorem 2.2.12 gives necessary and sufficient conditions for a t-design to be simple, purely in terms of the automorphism group of the design. Some constructions are given.

Finally, 2-designs with k = 3 and λ = 2 are considered in detail. These designs are first considered in general, with examples illustrating some of the configurations which can arise. Then an attempt is made to classify all such designs with an automorphism group transitive on pairs of points. Many cases are eliminated of reduced to combinations of Steiner triple systems. In the remaining cases, the simple designs are determined to consist of one infinite class and one exceptional case.