930 resultados para Structure-function
Resumo:
It is extremely difficult to explore mRNA folding structure by biological experiments. In this report, we use stochastic sampling and folding simulation to test the existence of the stable secondary structural units of-mRNA, look for the folding units, and explore the probabilistic stabilization of the units. Using this method, We made simulations for all possible local optimum secondary structures of a single strand mRNA within a certain range, and searched for the common parts of the secondary structures. The consensus secondary structure units (CSSUs) extracted from the above method are mainly hairpins, with a few single strands. These CSSUs suggest that the mRNA folding units could be relatively stable and could perform specific biological function. The significance of these observations for the mRNA folding problem in general is also discussed. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In recent years, there has been an increased number of sequenced RNAs leading to the development of new RNA databases. Thus, predicting RNA structure from multiple alignments is an important issue to understand its function. Since RNA secondary structures are often conserved in evolution, developing methods to identify covariate sites in an alignment can be essential for discovering structural elements. Structure Logo is a technique established on the basis of entropy and mutual information measured to analyze RNA sequences from an alignment. We proposed an efficient Structure Logo approach to analyze conservations and correlations in a set of Cardioviral RNA sequences. The entropy and mutual information content were measured to examine the conservations and correlations, respectively. The conserved secondary structure motifs were predicted on the basis of the conservation and correlation analyses. Our predictive motifs were similar to the ones observed in the viral RNA structure database, and the correlations between bases also corresponded to the secondary structure in the database.
Resumo:
A series of flames in a turbulent methane/air stratified swirl burner is presented. The degree of stratification and swirl are systematically varied to generate a matrix of experimental conditions, allowing their separate and combined effects to be investigated. Non-swirling flows are considered in the present paper, and the effects of swirl are considered in a companion paper (Part II). A mean equivalence ratio of φ=0.75 is used, with φ for the highest level of stratification spanning 0.375-1.125. The burner features a central bluff-body to aid flame stabilization, and the influence of the induced recirculation zone is also considered. The current work focuses on non-swirling flows where two-component particle image velocimetry (PIV) measurements are sufficient to characterize the main features of the flow field. Scalar data obtained from Rayleigh/Raman/CO laser induced fluorescence (CO-LIF) line measurements at 103μm resolution allow the behavior of key combustion species-CH 4, CO 2, CO, H 2, H 2O and O 2-to be probed within the instantaneous flame front. Simultaneous cross-planar OH-PLIF is used to determine the orientation of the instantaneous flame normal in the scalar measurement window, allowing gradients in temperature and progress variable to be angle corrected to their three dimensional values. The relationship between curvature and flame thickness is investigated using the OH-PLIF images, as well as the effect of stratification on curvature.The main findings are that the behavior of the key combustion species in temperature space is well captured on the mean by laminar flame calculations regardless of the level of stratification. H 2 and CO are significant exceptions, both appearing at elevated levels in the stratified flames. Values for surface density function and by extension thermal scalar dissipation rate are found to be substantially lower than laminar values, as the thickening of the flame due to turbulence dominates the effect of increased strain. These findings hold for both premixed and stratified flames. The current series of flames is proposed as an interesting if challenging set of test cases for existing and emerging turbulent flame models, and data are available on request. © 2012 The Combustion Institute.
Resumo:
Experimental results are presented from a series of turbulent methane/air stratified flames stabilized on a swirl burner. Nine operating conditions are considered, systematically varying the level of stratification and swirl while maintaining a lean global mean equivalence ratio of φ̄=0.75. Scalar data are obtained from Rayleigh/Raman/CO laser induced fluorescence (CO-LIF) line measurements at 103μm resolution, allowing the behavior of the major combustion species-CH 4, CO 2, CO, H 2, H 2O and O 2-to be probed within the instantaneous flame front. The corresponding three-dimensional surface density function and thermal scalar dissipation rate are investigated, along with geometric characteristics of the flame such as curvature and flame thickness. Hydrogen and carbon monoxide levels within the flame brush are raised by stratification, indicating models with laminar premixed flame chemistry may not be suitable for stratified flames. However, flame surface density, scalar dissipation and curvature all appear insensitive to the degree of stratification in the flames surveyed. © 2012 The Combustion Institute.
Resumo:
Measurements consisting of γ-ray excitation functions and angular distributions were performed using the (n,n′γ) reaction on Ni62. The excitation function data allowed us to check the consistency of the placement of transitions in the level scheme. From γ-ray angular distributions, the lifetimes of levels up to ~3.8 MeV in excitation energy were extracted with the Doppler-shift attenuation method. The experimentally deduced values of reduced transition probabilities were compared with the predictions of the quadrupole vibrator model and with large-scale shell model calculations in the fp shell configuration space. Two-phonon states were found to exist with some notable deviation from the predictions of the quadrupole vibrator model, but no evidence for the existence of three-phonon states could be established. Z=28 proton core excitations played a major role in understanding the observed structure. © 2011 American Physical Society.
Resumo:
A fundamental problem in the analysis of structured relational data like graphs, networks, databases, and matrices is to extract a summary of the common structure underlying relations between individual entities. Relational data are typically encoded in the form of arrays; invariance to the ordering of rows and columns corresponds to exchangeable arrays. Results in probability theory due to Aldous, Hoover and Kallenberg show that exchangeable arrays can be represented in terms of a random measurable function which constitutes the natural model parameter in a Bayesian model. We obtain a flexible yet simple Bayesian nonparametric model by placing a Gaussian process prior on the parameter function. Efficient inference utilises elliptical slice sampling combined with a random sparse approximation to the Gaussian process. We demonstrate applications of the model to network data and clarify its relation to models in the literature, several of which emerge as special cases.
Resumo:
Natural killer (NK) cell enhancing factor (NKEF) belongs to the newly defined peroxiredoxin (Prx) family. Its functions are to enhance NK cell cytotoxicity and to protect DNA and proteins from oxidative damage. In this study, a partial cDNA sequence of carp NKEF-B was isolated from thymus cDNA library. Subsequently, the full-length cDNA of carp NKEF-B was obtained by means of 3' and 5' RACE, respectively. The full-length cDNA of carp NKEF-B was 1022 bp, consisting of a 73 bp 5'-terminal untranslated region (UTR), a 355 bp T-terminal UTR, and a 594 bp open reading frame coding for a protein of 197 amino acids. Carp NKEF-B contained two consensus Val-Cys-Pro (VCP) motifs and three consensus cysteine (Cys-51, Cys-70 and Cys-172) residues. Sequence comparison showed that the deduced amino acid sequence of carp NKEF-B had an overall similarity of 74-96% to that of other species homologues. Phylogenetic analysis revealed that carp NKEF-B forms a cluster with other known teleost NKEF-Bs. Then, by PCR we obtained a 5.1 -k long genomic DNA of carp NKEF-B containing six exons and five introns. Realtime RT-PCR results showed that carp NKEF-B gene was predominantly detected in kidney and head kidney under un-infected conditions. Whereas under SVCV-infection condition, the expression of NKEF-B gene was significantly increased in blood cells, gill, intestine and spleen, but maintained in liver, and decreased significantly in kidney and head kidney. Finally, the rNKEF-B was constructed and expressed in Escherichia coli. By using an antibody against carp rNKEF-B, immunohistochemical study further indicated that NKEF-B positive cells are mainly some RBCs and a few epithelial cells in gill and intestine, and that under SVCV-infection condition, these positive cells or positive products in their cytoplasm were mainly increased in gill and spleen sections of carp. The results obtained in the present study will help to understand the function of NKEF-B in teleost innate immunity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
SLP-76 is an important member of the SLP-76 family of adapters, and it plays a key role in TCR signaling and T cell function. Partial cDNA sequence of SLP-76 of common carp (Cyprinus carpio L.) was isolated from thymus cDNA Library by the method of suppression subtractive hybridization (SSH). Subsequently, the full length cDNA of carp SLP-76 was obtained by means of 3' RACE and 5' RACE, respectively. The full Length cDNA of carp SLP-76 was 2007 bp, consisting of a T-terminal untranslated region (UTR) of 285 bp, a T-terminal. UTR of 240 bp, and an open reading frame of 1482 bp. Sequence comparison showed that the deduced amino acid sequence of carp SLP-76 had an overall similarity of 34-73% to that of other species homotogues, and it was composed of an NH2-terminal domain, a central proline-rich domain, and a C-terminal SH2 domain. Amino acid sequence analysis indicated the existence of a Gads binding site R-X-X-K, a 10-aa-long sequence which binds to the SH3 domain of LCK in vitro, and three conserved tyrosine-containing sequence in the NH2-terminal domain. Then we used PCR to obtain a genomic DNA which covers the entire coding region of carp SLP-76. In the 9.2 k-long genomic sequence, twenty one exons and twenty introns were identified. RT-PCR results showed that carp SLP-76 was expressed predominantly in hematopoietic tissues, and was upregulated in thymus tissue of four-month carp compared to one-year old carp. RT-PCR and virtual northern hybridization results showed that carp SLP-76 was also upregulated in thymus tissue of GH transgenic carp at the age of four-months. These results suggest that the expression level of SLP-76 gene may be related to thymocyte development in teleosts. (c) 2007 Published by Elsevier Ltd.
Resumo:
Theoretical calculation of electronic energy levels of an asymmetric InAs/InGaAS/GaAS quantum-dots-in-a-well (DWELL) structure for infrared photodetectors is performed in the framework of effective-mass envelope-function theory. Our calculated results show that the electronic energy levels in quantum dots (QDs) increase when the asymmetry increases and the ground state energy increases faster than the excited state energies. Furthermore, the results also show that the electronic energy levels in QDs decrease as the size of QDs and the width of quantum well (QW) in the asymmetric DWELL structure increase. Additionally, the effects of asymmetry, the size of QDs and the width of QW on the response peak of asymmetry DWELL photodetectors are also discussed.
Resumo:
The electronic structure and optical gain of wurtzite ZnO nanowires are investigated in the framework of effective-mass envelope-function theory. We found that as the elliptical aspect ratio e increases to be larger than a critical value, the hole ground states may change from optically dark to optically bright. The optical gain of ZnO nanowires increases as the hole density increases. For elliptical wire with large e, the y-polarized mode gain can be several thousand cm(-1), while the x-poiarized mode gain may be 26 times smaller than the former, so they can be used as ultraviolet linearly polarized lasers. (C) 2008 American Institute of Physics.
Resumo:
The electronic structure and binding energy of a hydrogenic acceptor impurity in 2, 1, and 0-dimensional semiconductor nano-structures (i.e. quantum well (QW), quantum well wire (QWW), and quantum dot (QD)) are studied in the framework of effective-mass envelope-function theory. The results show that (1) the energy levels monotonically decrease as the quantum confinement sizes increase; (2) the impurity energy levels decrease more slowly for QWWs and QDs as their sizes increase than for QWs; (3) the changes of the acceptor binding energies are very complex as the quantum confinement size increases; (4) the binding energies monotonically decrease as the acceptor moves away from the nano-structures' center; (5) as the symmetry decreases, the degeneracy is lifted, and the first binding energy level in the QD splits into two branches. Our calculated results are useful for the application of semiconductor nano-structures in electronic and photoelectric devices.
Resumo:
We have fabricated a set of samples of zincblende Mn-rich Mn(Ga)As clusters embedded in GaAs matrices by annealing (Ga,Mn)As films with different nominal Mn content at 650 degrees C. For the samples with Mn content no more than 4.5%, the Curie temperature reaches nearly 360 K. However, when Mn content is higher than 5.4%, the samples exhibit a spin-glass-like behavior. We suggest that these different magnetic properties are caused by the competing result of dipolar and Ruderman-Kittel-Kasuya-Yosida interaction among clusters. The low-temperature spin dynamic behavior, especially the relaxation effect, shows the extreme creeping effect which is reflected by the time constant tau of similar to 10(11) s at 10 K. We explain this phenomenon by the hierarchical model based on the mean-field approach. We also explain the memory effect by the relationship between the correlation function and the susceptibility.
Resumo:
We have studied the single-electron and two-electron vertically assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six energy levels of the single-electron quantum disks and the two lowest energy levels of the two-electron quantum disks in an axial magnetic field. The change of the magnetic field strongly modifies the electronic structures as an effective potential, leading to the splitting of the levels and the crossings between the levels. The effect of the vertical alignment on the electronic structures is discussed. It is demonstrated that the switching of the ground-state spin exists between S=0 and S=1. The energy difference DeltaE between the lowest S=0 and S=1 states is shown as a function of the axial magnetic field. It is also found that the variation of the energy difference between the lowest S=0 and S=1 states in the strong-B S=0 state is fairly linear. Our results provide a possible realization for a qubit to be fabricated by current growth techniques. (C) 2004 American Institute of Physics.
Resumo:
A series of hydrogenated silicon films near the threshold of crystallinity was prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) from a mixture of SiH4 diluted in H, The effect of hydrogen dilution ratios R-H = [H-2]/[SiH4] on microstructure of the films was investigated. Photoelectronic properties and stability of the films were studied as a function of crystalline fraction. The results show that more the crystalline volume fraction in the silicon films, the higher mobility life-time product (mu tau), better the stability and lower the photosensitivity. Those diphasic films contained 8%-31% crystalline volume fraction can gain both the fine photoelectronic properties and high stability. in the diphasic (contained 12% crystalline volume fraction) solar cell, we obtained a much lower light-induced degradation of similar to 2.9%, with a high initial efficiency of 10.01% and a stabilized efficiency of 9.72% (AM1.5, 100 mW/cm(2)). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We have studied a two-electron quantum dot molecule in a magnetic field. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate two lowest energy levels of the two-electron quantum dot molecule in a magnetic field. Our results show that the electron interactions are significant, as they can change the total spin of the two-electron ground state of the system by adjusting the magnetic field between S = 0 and S = 1. The energy difference DeltaE between the lowest S = 0 and S = 1 states is shown as a function of the axial magnetic field. We found that the energy difference between the lowest S = 0 and S = 1 states in the strong-B S = 0 state varies linearly. Our results provide a possible realization for a qubit to be fabricated by current growth techniques.