999 resultados para Structural stabilities


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pyrophosphate cathodes have been recently reported as a competent family of insertion compounds for sodium-ion batteries. In the current study, we have investigated the binary Na2 - x(Fe1 - yMny)P2O7 (0 <= y <= 1) pyrophosphate family, synthesized by the classical solid-state method. They form a continuous solid solution maintaining triclinic P-1 (#2) symmetry. The local structural coordination differs mainly by different degrees of Na site occupancy and preferential occupation of the Fe2 site by Mn. The structural and magnetic properties of these mixed-metal pyrophosphate phases have been studied. In each case, complete Fe3+/Fe2+ redox activity has been obtained centered at 3 V vs. Na. The Fe3+/Fe2+ redox process involves multiple steps between 2.5 and 3 V owing to Na-cation ordering during electrochemical cycling, which merge to form a broad single Fe3+/Fe2+ redox peak upon progressive Mn-doping. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Scheelite-type MWO4 (M = Ca, Sr, and Ba) nanophosphors were synthesized by the precipitation method. All compounds crystallized in the tetragonal structure with space group 141/a (No. 88). Scherrer's and TEM results revealed that the average crystallite size varies from 32 to 55 nm. FE-SEM illustrate the spherical (CaWO4), bouquet (SrWO4), and fish (BaWO4) like morphologies. PL spectra indicate the broad emission peak maximum at 436 (CaWO4), 440 (SrWO4), and 433 nm (BaWO4) under UV excitation. The calculated CIE color coordinates of MWO4 nanophosphors are close to the commercial BAM and National Television System Committee blue phosphor. The photocatalytic activities of MWO4 were investigated for the degradation of methylene blue dye under UV illumination. At pH 3, BaWO4 nanocatalyst showed 100% dye degradation within 60 min. The photocatalytic activity was in the decreasing order of BaWO4> CaWO4>SrWO4 under both neutral and acidic conditions. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous Ge2Sb2Te5 (GST) alloy, upon heating crystallize to a metastable NaCl structure around 150 degrees C and then to a stable hexagonal structure at high temperatures (>= 250 degrees C). It has been generally understood that the phase change takes place between amorphous and the metastable NaCl structure and not between the amorphous and the stable hexagonal phase. In the present work, it is observed that the thermally evaporated (GST)(1-x)Se-x thin films (0 <= x <= 0.50) crystallize directly to the stable hexagonal structure for x >= 0.10, when annealed at temperatures >= 150 degrees C. The intermediate NaCl structure has been observed only for x, 0.10. Chemically ordered network of GST is largely modified for x >= 0.10. Resistance, thermal stability and threshold voltage of the films are found to increase with the increase of Se. The contrast in electrical resistivity between the amorphous and crystalline phases is about 6 orders of magnitude. The increase in Se shifts the absorption edge to lower wavelength and the band gap widens from 0.63 to 1.05 eV. Higher resistance ratio, higher crystallization temperature, direct transition to the stable phase indicate that (GST)(1-x)Se-x films are better candidates for phase change memory applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A first-principles study was carried out to investigate the stability of the crystal structure of beta-form belite (beta-C2S) substituted by Sr atoms as trace impurities for Ca atoms in CaOx polyhedra. The effect of the connection types of CaOx polyhedral, in the form of common-edge bond and common-face bond, upon the crystal stability is described. The Ca-Ca interatomic distance closely relates to the hydraulic activity of beta-C2S. The beta-C2S substituted by an Sr atom for Ca(1) atoms having seven Ca-O bonds is energetically more stable than that substituted by an Sr atom for Ca(2) atoms having eight Ca-O bonds. The Sr-doped beta-C2S having a common face bond with SrOx polyhedra is energetically more favorable and results in structural stability compared with that having a common edge bond with SrOx polyhedra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A `powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) similar to 650 pCN(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction between 4,4'-sulfonyldibenzoic acid (H(2)SDBA) and manganese under mild conditions resulted in the isolation of two new three-dimensional compounds, Mn-4(C14H8O6S)(4)(DMA)(2)]center dot 3DMA, I, and Mn-3(C14H8O6S)(3)(DMA)(2)(MeOH)]center dot DMA, IIa. Both structures have Mn-3 trimer oxo cluster units. While the Mn-3 oxoclusters are connected through octahedral manganese forming one-dimensional Mn-O-Mn chains in I, the Mn-3 units are isolated in IIa. The SDBA units connect the Mn-O-Mn chains and the Mn-3 clusters giving rise to the three-dimensional structure. Both compounds have coordinated and free solvent molecules. In IIa, two different solvent molecules are coordinated, of which one solvent can be reversibly exchanged by a variety of other similar solvents via a solvent-mediated single crystal to single crystal (SCSC) transformation. The free lattice DMA solvent molecules in I can be exchanged by water molecules resulting in hydrophilic channels. Proton conductivity studies on I reveals a high proton mobility with conductivity values of similar to 0.87 x 10(-3) Omega(-1) cm(-1) at 34 degrees C and 98% RH, which is comparable to some of the good proton conductivity values observed in inorganic coordination polymers. We have also shown structural transformation of I to IIa through a possible dissolution and recrystallization pathway. In addition, both I and IIa appear to transform to two other manganese compounds H3O]Mn-3(mu(3)-OH)(C14H8O6S)(3)(H2O)](DMF)(5) and H3O](2)Mn-7(mu 3-OH)(4)(C14H8O6S)(6)(H2O)(4)](H2O)(2)(DMF)(8) under suitable reaction conditions. We have partially substituted Co in place of Mn in the Mn-3 trimer clusters forming CoMn2(C14H8O6S)(3)(DMA)(2)(EtOH)]center dot DMA, III, a structure that is closely related to IIa. All the compounds reveal antiferromagnetic behavior. On heating, the cobalt substituted phase (compound III) forms a CoMn2O4 spinel phase with particle sizes in the nanometer range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cubic ZrO2: Fe3+ (0.5-4 mol%) nanoparticles (NPs) were synthesized via bin-inspired, inexpensive and simple route using Phyllanthus acidus as fuel. PXRD, SEM, TEM, FTIR, UV absorption and PL studies were performed to ascertain the formation of NPs. Rietveld analysis confirmed the formation of cubic structure. The influence of Fe3+ on the structure, morphology, UV absorption, PL emission and photocatalytic activity of NPs were investigated. The CIE chromaticity coordinates (0.36, 0.41) show that NPs could be a promising candidate for white LEDs. The influence of Fe3+ on ZrO2 matrix for photocatalytic degradation of AO7 was evaluated under UVA and Sunlight irradiation. The enhanced photocatalytic activity of spherical shaped ZrO2: Fe3+ (2 mol%) under UVA light was attributed to dopant concentration, crystallite size, narrow band gap, textural properties and capability for reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers were followed the order SO42- > Cl- > C2H5OH > HCO3- > CO32-. The recycling catalytic ability of the ZrO2: Fe3+ (2 mol%) was also evaluated with a negligible decrease in the degradation efficiency even after the sixth successive run. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synthesis and structural characterization of two novel symmetrical banana mesogens built from resorcinol with seven phenyl rings linked by ester and imine with a terminal dodecyl/dodecyloxy chain has been carried out. Density functional theory (DFT) has been employed for obtaining the geometry optimized structures, the dipole moments and C-13 NMR chemical shifts. The HOPM and DSC studies revealed enantiotropic B-2 and B-7 phases for the dodecyl and dodecyloxy homologs respectively. The powder X-ray studies of both the mesogens indicate the presence of layer ordering. The polarization measurements reveal an anti-ferroelectric switching for the B-2 phase of the dodecyl homolog whose structure has been identified as SmCSPA. The B-7 phase of the dodecyloxy homolog was found to be non-switchable. High resolution C-13 NMR study of the dodecyl homolog in its mesophase has been carried out. C-13-H-1 dipolar couplings obtained from the 2-dimensional separated local field spectroscopy experiment were used to obtain the orientational order parameters of the different segments of the mesogen. Very large C-13-H-1 dipolar couplings observed for the carbons of the central phenyl ring (9.7-12.3 kHz) in comparison to the dipolar couplings of those of the side arm phenyl rings (less than 3 kHz) are a direct consequence of the ordering in the banana phase and the shape of the molecule. From the ratio of the local order parameter values, the bent-angle of the mesogen could be determined in a straight forward manner to be 120.5 degrees.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two hydroxycinnamic acids viz., p-coumaric, and caffeic acids have been extracted and purified from Parthenium hysterophorus, subsequently characterized by elemental analysis, FT-IR, NMR, single crystal X-ray crystallography. The optimized structures of these acids were calculated in terms of density functional theory by Gaussian 09. The validation of experimental and theoretically obtained data for structural parameters such as bond lengths and bond angles has have been carried out to analyze the statistical significance by curve fitting analysis and the values of correlation coefficient found to be 0.985, 0.992, and 0.984, 0.975 in p-coumaric, and caffeic acids, respectively. The calculated HOMO and LUMO energies show the eventual charge transfer interaction within the molecule. Thermal studies were also carried out by thermogravimetry (TG), differential thermogravimetric analysis (DTA), and derivative thermogravimetry (DTG). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structures of crystals of Mycobacterium tuberculosis RecA, grown and analysed under different conditions, provide insights into hitherto underappreciated details of molecular structure and plasticity. In particular, they yield information on the invariant and variable features of the geometry of the P-loop, whose binding to ATP is central for all the biochemical activities of RecA. The strengths of interaction of the ligands with the P-loop reveal significant differences. This in turn affects the magnitude of the motion of the `switch' residue, Gln195 in M. tuberculosis RecA, which triggers the transmission of ATP-mediated allosteric information to the DNA binding region. M. tuberculosis RecA is substantially rigid compared with its counterparts from M smegmatis and E. coli, which exhibit concerted internal molecular mobility. The interspecies variability in the plasticity of the two mycobacterial proteins is particularly surprising as they have similar sequence and 3D structure. Details of the interactions of ligands with the protein, characterized in the structures reported here, could be useful for design of inhibitors against M. tuberculosis RecA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many organisms ``Universal Stress Proteins'' CUSPS) are induced in response to a variety of environmental stresses. Here we report the structures of two USPs, YnaF and YdaA from Salmonella typhimurium determined at 1.8 angstrom and 2.4 angstrom resolutions, respectively. YnaF consists of a single USP domain and forms a tetrameric organization stabilized by interactions mediated through chloride ions. YdaA is a larger protein consisting of two tandem USP domains. Two protomers of YdaA associate to form a structure similar to the YnaF tetramer. YdaA showed ATPase activity and an ATP binding motif G-2X-G-9X-G(S/T/N) was found in its C-terminal domain. The residues corresponding to this motif were not conserved in YnaF although YnaF could bind ATP. However, unlike YdaA, YnaF did not hydrolyse ATP in vitro. Disruption of interactions mediated through chloride ions by selected mutations converted YnaF into an ATPase. Residues that might be important for ATP hydrolysis could be identified by comparing the active sites of native and mutant structures. Only the C-terminal domain of YdaA appears to be involved in ATP hydrolysis. The structurally similar N-terminal domain was found to bind a zinc ion near the segment equivalent to the phosphate binding loop of the C-terminal domain. Mass spectrometric analysis showed that YdaA might bind a ligand of approximate molecular weight 800 daltons. Structural comparisons suggest that the ligand, probably related to an intermediate in lipid A biosynthesis, might bind at a site close to the zinc ion. Therefore, the N-terminal domain of YdaA binds zinc and might play a role in lipid metabolism. Thus, USPs appear to perform several distinct functions such as ATP hydrolysis, altering membrane properties and chloride sensing. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed Gaussian network model based normal mode analysis of 3-dimensional structures of multiple active and inactive forms of protein kinases. In 14 different kinases, a more number of residues (1095) show higher structural fluctuations in inactive states than those in active states (525), suggesting that, in general, mobility of inactive states is higher than active states. This statistically significant difference is consistent with higher crystallographic B-factors and conformational energies for inactive than active states, suggesting lower stability of inactive forms. Only a small number of inactive conformations with the DFG motif in the ``in'' state were found to have fluctuation magnitudes comparable to the active conformation. Therefore our study reports for the first time, intrinsic higher structural fluctuation for almost all inactive conformations compared to the active forms. Regions with higher fluctuations in the inactive states are often localized to the aC-helix, aG-helix and activation loop which are involved in the regulation and/or in structural transitions between active and inactive states. Further analysis of 476 kinase structures involved in interactions with another domain/protein showed that many of the regions with higher inactive-state fluctuation correspond to contact interfaces. We also performed extensive GNM analysis of (i) insulin receptor kinase bound to another protein and (ii) holo and apo forms of active and inactive conformations followed by multi-factor analysis of variance. We conclude that binding of small molecules or other domains/proteins reduce the extent of fluctuation irrespective of active or inactive forms. Finally, we show that the perceived fluctuations serve as a useful input to predict the functional state of a kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature (12 K <= T <= 300 K) dependent extended x-ray absorption fine structure (EXAFS) studies at the Fe K edge in FeSe1-xTex (x = 0, 0.5 and 1.0) compounds have been carried out to understand the reasons for the increase in T-C upon Te doping in FeSe. While local distortions are present near superconducting onset in FeSe and FeSe0.5Te0.5, they seem to be absent in non superconducting FeTe. Of crucial importance is the variation of anion height. In FeSe0.5Te0.5, near the superconducting onset, the two heights, h(Fe-Se) and h(Fe-Te) show a nearly opposite behaviour. These changes indicate a possible correlation between Fe-chalcogen hybridization and the superconducting transition temperature in these Fe-chalcogenides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a hybrid finite element based methodology to solve the coupled fluid structure problem of squeeze film effects in vibratory MEMS devices, such as gyroscopes, RF switches, and 2D resonators. The aforementioned devices often have a thin plate like structure vibrating normally to a fixed substrate, and are generally not perfectly vacuum packed. This results in a thin air film being trapped between the vibrating plate and the fixed substrate which behaves like a squeeze film offering both stiffness and damping. For accurate modelling of such devices the squeeze film effects must be incorporated. Extensive literature is available on squeeze film modelling, however only a few studies address the coupled fluid elasticity problem. The majority of the studies that account for the plate elasticity coupled with the fluid equation, either use approximate mode shapes for the plate or use iterative solution strategies. In an earlier work we presented a single step coupled methodology using only one type of displacement based element to solve the coupled problem. The displacement based finite element models suffer from locking issues when it comes to modelling very thin structures with the lateral dimensions much larger than the plate thickness as is typical in MEMS devices with squeeze film effects. In this work we present another coupled formulation where we have used hybrid elements to model the structural domain. The numerical results show a huge improvement in convergence and accuracy with coarse hybrid mesh as compared to displacement based formulations. We further compare our numerical results with experimental data from literature and find them to be in good accordance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the synthesis of Eu3+-activated SrMoO4 phosphors by the facile nitrate-citrate gel combustion method. Powder XRD and Rietveld refinement data confirmed that these phosphors have a monophasic scheelite-type tetragonal structure with space group I4(1)/a (No. 88). FESEM micrographs indicate the agglomerated spherical particles. FTIR spectra showed four stretching and bending vibrational modes (2A(u) and 2E(u)). UV-Visible absorption spectroscopy illustrated that the optical band gap energy (E-g) values increase with increase in Eu3+ concentration. The host SrMoO4 phosphor exhibited an intense blue emission under UV excitation (368 nm). The Eu3+-activated SrMoO4 phosphors revealed characteristic luminescence due to Eu3+ ion corresponding to D-5(1) -> F-7(J) (J = 1,2) and D-5(0) -> F-7(J) (J = 1,2,3,4) transitions upon 465 nm excitation. The electric dipole transition located at 615 nm (D-5(0) -> F-7(2)) was stronger than the magnetic dipole transition located at 592 nm (D-5(0) -> F-7(1)). Intensity parameters (Omega(2), Omega(4)) and radiative properties such as transition probabilities (A(T)), radiative lifetime (tau(rad)) and branching ratio (beta) of Eu3+-activated SrMoO4 phosphors were calculated using the Judd-Ofelt theory. Based on the CIE chromaticity diagram, these phosphors can be promising materials for the development of blue and orange-red component in white LEDs. (C) 2015 Elsevier B.V. All rights reserved.