909 resultados para Strength Aluminum-alloys
Resumo:
Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2 `' Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.
Resumo:
Ultrafine-grained (UFG) materials with grain sizes in the submicrometer or nanometer range may be prepared through the application of severe plastic deformation (SPD) to bulk coarse-grained solids. These materials generally exhibit high strength but only very limited ductility in low-temperature testing, thereby giving rise to the so-called paradox of strength and ductility. This paradox is examined and a new quantitative diagram is presented which permits the easy insertion of experimental data. It is shown that relatively simple procedures are available for achieving both high strength and high ductility in UFG materials including processing the material to a very high strain and/or applying a very short-term anneal immediately after the SPD processing. Significant evidence is now available demonstrating the occurrence of grain boundary sliding in these materials at low temperatures, where this is attributed to the presence of non-equilibrium grain boundaries and the occurrence of enhanced diffusion along these boundaries.
Resumo:
Eutectic growth offers a variety of examples for pattern formation which are interesting both for theoreticians as well as experimentalists. One such example of patterns is ternary eutectic colonies which arise as a result of instabilities during growth of two solid phases. Here, in addition to the two major components being exchanged between the solid phases during eutectic growth, there is an impurity component which is rejected by both solid phases. During progress of solidification, there develops a boundary layer of the third impurity component ahead of the solidification front of the two solid phases. Similar to Mullins-Sekerka type instabilities, such a boundary layer tends to make the global solidification envelope unstable to morphological perturbations giving rise to two-phase cells. This phenomenon has been studied numerically in two dimensions for the conditions of directional solidification, by Plapp and Karma (Phys Rev E 66:061608, 2002) using phase-field simulations. While, in the work by Plapp and Karma (Phys Rev E 66:061608, 2002) all interfaces are isotropic, in our presentation, we extend the phase-field model by considering interfacial anisotropy in the solid-solid and solid-liquid interfaces and characterize the role of interfacial anisotropy on the stability of the growth front through phase-field simulations in two dimensions.
Resumo:
Objectives: A model that uses right hind-limb unloading of rats is used to study the consequences of skeletal unloading during various conditions like space flights and prolonged bed rest in elderly. This study was aimed to investigate the additive effects of antiresorptive agent zoledronic acid (ZOL), alone and in combination with propranolol (PRO) in a rat model of disuse osteoporosis. Methods: In the present study, 3-month-old male Wistar rats had their right hind-limb immobilized (RHLI) for 10 weeks to induce osteopenia, then were randomized into four groups: 1-RHLI positive control, 2-RHLI plus ZOL (50 mu g/kg, i.v. single dose), 3-RHLI plus PRO (0.1 mg/kg, s.c. 5 days per week), 4-RHLI plus PRO (0.1 mg/kg, s.c. 5 days per week) plus ZOL (50 mu g/kg, i.v. single dose) for another 10 weeks. One group of non-immobilized rats was used as negative control. At the end of treatment, the femurs were removed and tested for bone porosity, bone mechanical properties, and bone dry and ash weight. Results: With respect to improvement in the mechanical strength of the femoral mid-shaft, the combination treatment with ZOL plus PRO was more effective than ZOL or PRO monotherapy. Moreover, combination therapy using ZOL plus PRO was more effective in improving dry bone weight and preserved the cortical bone porosity better than monotherapy using ZOL or PRO in right hind-limb immobilized rats. Conclusions: These data suggest that this combined treatment with ZOL plus PRO should be recommended for the treatment of disuse osteoporosis. (C) 2014 Elsevier Editora Ltda. All rights reserved.
Resumo:
An attempt has been made to bring out the influence on strength and volume change behavior of fabric changes and new cementitious compound formation in a soil upon addition of various lime contents and with curing periods. The effects of changes in fabric of treatment with various lime contents (0, 2,4 and 6%) and with curing periods (0, 7, 14 and 28 days) have been evaluated by one-dimensional consolidation tests, in terms of void ratio changes and compressibility. The strength of soil treated with different lime contents with curing periods up to 28 days, and with the optimum lime content of 6% up to one year has been determined by unconfined compression tests. Comparison of effects of lime on the strength and volume change behavior of the soil brings out that the formation of flocculated fabric and cation exchange significantly reduces the compressibility of soil but marginally increases the strength. Cementation of soil particles and filling with cementitious compounds of the voids of flocculated fabric in the soil marginally reduces the compressibility but significantly increases the strength. Thus, the mechanism of volume change behavior of soil treated with lower lime content at short curing periods is distinctly different from that of the soil treated with optimum lime content at longer curing periods. This is consistent with the increase in the permeability caused by the addition from 2 to 4% lime and the decrease following the addition of 6% lime. Changes consistent with mechanical behavior have been determined by scanning electron microscope, X-ray diffraction and thermal analyses, energy dispersive X-ray spectrometer and pH value in microstructure, mineralogy, chemical composition and alkalinity, respectively. (C) 2015 Published by Elsevier B.V.
Resumo:
Rates of hydrogen/deuterium (H/D) exchange determined by H-1 NMR spectroscopy are utilized to derive the strength of hydrogen bonds and to monitor the electronic effects in the site-specific halogen substituted benzamides and anilines. The theoretical fitting of the time dependent variation of the integral areas of H-1 NMR resonances to the first order decay function permitted the determination of HID exchange rate constants (k) and their precise half-lives (t(1/2)) with high degree of reproducibility. The comparative study also permitted the unambiguous determination of relative strength of hydrogen bonds and the contribution from electronic effects on the HID exchange rate. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The flow characteristics of a near-eutectic heat-treated Al-Si based cast alloy have been examined in compression at strain rates varying from 3 x 10(-4) to 10(2) s(-1) and at three different temperatures, i.e., room temperature (RT), 100 degrees C and 200 degrees C. The dependence of flow behavior on modification is examined by testing the alloy in both the unmodified and modified conditions. Modification has strong influence on strain rate sensitivity (SRS), strength and work hardening behavior of the alloy. The strength of the alloy is found to increase with increase in strain rate for both the conditions. The increase is more rapid above the strain rate of 10(-1) s(-1) for the unmodified alloy at all the temperatures. This rapid increase is observed at 1 s(-1) at RT and 100 degrees C, and at 10(-2) s(-1) at 200 degrees C for the modified alloy. The thermally dependent process of the Al matrix is rate controlling in the unmodified alloy. On the other hand, the thermally dependent process of both Al matrix and Si particles are rate controlling, which is responsible for the higher strain rate sensitivity (SRS) in the modified alloy. The unmodified alloy exhibits a larger work hardening rate than the modified alloy during the initial stages of straining due to fiber loading of unmodified Si particles. However, the hardening rate decreases sharply at higher strains for the unmodified alloy due to a higher rate of Si particle fracture. Thermal softening is observed for both alloys at 200 degrees C due to precipitate coarsening, which leads to a decrease in SRS at higher temperatures. Stress simulations by microstructure based finite element method support the experimentally observed particle and matrix fracture behavior. Negative SRS and serrated flow are observed at lower strain rate regime (3 x 10(-4) to 10(-2) s(-1)) at RT and 100 degrees C, in both alloys. The critical onset strain is found to be lower and the magnitude of serration is found to be higher for the modified alloy, which suggests that, in addition to dynamic strain aging, Si particle size and morphology also play a role in serrated flow. (C) 2015 Elsevier Inc All rights reserved.
Resumo:
During the transition from single crystalline to polycrystalline behavior, the available data show the strength increasing or decreasing as the number of grains in a cross section is reduced. Tensile experiments were conducted on polycrystalline Ni with grain sizes (d) between 16 and 140 mu m and varying specimen thickness (t), covering a range of lambda (-t/d) between similar to 0.5 and 20. With a decrease in lambda, the data revealed a consistent trend of strength being independent of lambda at large lambda, an increase in strength, and then a decrease in strength. Microstructural studies revealed that lower constraints enabled easier rotation of the surface grains and texture evolution, independent of the specimen thickness. In specimen interiors, there was a greater ease of rotation in thinner samples. Measurements of misorientation deviations within grains revealed important differences in the specimen interiors. A simple model is developed taking into account the additional geometrically necessary dislocations due to variations in the behavior of surface and interior grains, leading to additional strengthening. A suitable combination of this strengthening and surface weakening can give rise to wide range of possibilities with a decrease in lambda, including weakening, strengthening, and strengthening and weakening.
Resumo:
Melt spun ribbons of Fe95-x Zr (x) B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mossbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline alpha-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline alpha-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mossbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, alpha-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, alpha-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4. (C) The Minerals, Metals & Materials Society and ASM International 2015
Resumo:
Tensile experiments on cold-drawn Ni microwires with diameters from similar to 115 to 50 gm revealed high strengths, with significant strength variability for finer wires with diameters less than similar to 50 gm. The wires showed pronounced necking at fracture. The coarser wires with diameters > 50 mu m exhibited conventional ductile cup-cone fracture, with dimples in the central zone and peripheral shear lips, whereas finer wires failed by shear with knife or chisel-edge fractures. Shear bands were observed in all samples. Further, through- section microscopy of selected fractured samples revealed that the shear bands did not go across the enitre specimen for the coarser wires. The shear bands led to grain fragmention, with a reduction in grain aspect ratio as well as rotations away from the initial < 111 > orientations. The strength data were analysed based on a Weibull approach. The data could be rationalized in terms of failure from volume defects in coarser wires, with a high Weibull modulus, and from surface defects in finer wires, with a low Weibull modulus and greater variability. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Strontium ions (Sr2+) are known to prevent osteoporosis and also encourage bone formation. Such twin requirements have motivated researchers to develop Sr-substituted biomaterials for orthopaedic applications. The present study demonstrates a new concept of developing Sr-substituted Mg-3(PO4)(2) - based biodegradable scaffolds. In particular, this work reports the fabrication, mechanical properties with an emphasis on strength reliability as well as in vitro degradation of highly biodegradable strontium-incorporated magnesium phosphate cements. These implantable scaffolds were fabricated using three-dimensional powder printing, followed by high temperature sintering and/or chemical conversion, a technique adaptable to develop patient-specific implants. A moderate combination of strength properties of 36.7 MPa (compression), 242 MPa (bending) and 10.7 MPa (tension) were measured. A reasonably modest Weibull modulus of up to 8.8 was recorded after uniaxial compression or diametral tensile tests on 3D printed scaffolds. A comparison among scaffolds with varying compositions or among sintered or chemically hardened scaffolds reveals that the strength reliability is not compromised in Sr-substituted scaffolds compared to baseline Mg-3(PO4)(2). The micro-computed tomography analysis reveals the presence of highly interconnected porous architecture in three-dimension with lognormal pore size distribution having median in the range of 17.74-26.29 mu m for the investigated scaffolds. The results of extensive in vitro ion release study revealed passive degradation with a reduced Mg2+ release and slow but sustained release of Sr2+ from strontium-substituted magnesium phosphate scaffolds. Taken together, the present study unequivocally illustrates that the newly designed Sr-substituted magnesium phosphate scaffolds with good strength reliability could be used for biomedical applications requiring consistent Sr2+-release, while the scaffold degrades in physiological medium. Statement of significance The study investigates the additive manufacturing of scaffolds based on different strontium-substituted magnesium phosphate bone cements by means of three-dimensional powder printing technique (3DPP). Magnesium phosphates were chosen due to their higher biodegradability compared to calcium phosphates, which is due to both a higher solubility as well as the absence of phase changes (to low soluble hydroxyapatite) in vivo. Since strontium ions are known to promote bone formation by stimulating osteoblast growth, we aimed to establish such a highly degradable magnesium phosphate ceramic with an enhanced bioactivity for new bone ingrowth. After post-processing, mechanical strengths of up to 36.7 MPa (compression), 24.2 MPa (bending) and 10.7 MPa (tension) could be achieved. Simultaneously, the failure reliability of those bioceramic implant materials, measured by Weibull modulus calculations, were in the range of 4.3-8.8. Passive dissolution studies in vitro proved an ion release of Mg2+ and PO43- as well as Sr2+, which is fundamental for in vivo degradation and a bone growth promoting effect. In our opinion, this work broadens the range of bioceramic bone replacement materials suitable for additive manufacturing processing. The high biodegradability of MPC ceramics together with the anticipated promoting effect on osseointegration opens up the way for a patient-specific treatment with the prospect of a fast and complete healing of bone fractures. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Adsorption of a molecule or group with an atom which is less electronegative than oxygen (0) and directly interacting with the surface is very relevant to development of PtM (M = 3d-transition metal) catalysts with high activity. Here, we present theoretical analysis of the adsorption of NH3 molecule (N being less electronegative than 0) on (111) surfaces of PtM (Fe, Co, Ni) alloys using the first principles density functional approach. We find that, while NH3-Pt interaction is stronger than that of NH3 with the elemental M-surfaces, it is weaker than the strength of interaction of NH3 with M-site on the surface of PtM alloy. (C) 2016 Published by Elsevier B.V.
Resumo:
Algorithms for extracting epochs or glottal closure instants (GCIs) from voiced speech typically fall into two categories: i) ones which operate on linear prediction residual (LPR) and ii) those which operate directly on the speech signal. While the former class of algorithms (such as YAGA and DPI) tend to be more accurate, the latter ones (such as ZFR and SEDREAMS) tend to be more noise-robust. In this letter, a temporal measure termed the cumulative impulse strength is proposed for locating the impulses in a quasi-periodic impulse-sequence embedded in noise. Subsequently, it is applied for detecting the GCIs from the inverted integrated LPR using a recursive algorithm. Experiments on two large corpora of speech with simultaneous electroglottographic recordings demonstrate that the proposed method is more robust to additive noise than the state-of-the-art algorithms, despite operating on the LPR.
Resumo:
A metastable nano-scale disordered precipitate with orthorhombic symmetry has been identified using high resolution scanning transmission electron microscopy. The phase, termed O', is metastable, formed by a shuffle mechanism involving a {110}<1<(1)over bar>0> transverse phonon wave in samples of Ti-26Nb-2Zr (at.%) quenched from the beta phase. The addition of 2% Zr to Ti-26Nb appears to suppress significantly the stability of both the {11 (2) over bar}<111> shear and 2/3 <111> longitudinal phonon wave but promotes the {110}<1<(1)over bar>0> transverse shuffle. This results in the nano-size O' phase being homogeneously formed in the parent beta phase matrix rather than the massive alpha `' phase. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
A nano-scale instability in the beta phase resulting in the formation of the disordered orthorhombic O' phase has been discovered in a fairly dilute binary Ti-Mo alloy, using selected area electron diffraction and high resolution scanning transmission electron microscopy. The O' phase informed in the alloy when the Mo content exceeds a critical value. The instability occurs in beta-solutionized samples that have been quenched to room temperature and is found to co-exist with athermal omega to phase. Interestingly, this nano-scale instability, involving the {110}<1<(1)over bar>0> soft-phonon shuffle, occurs in the beta phase without deliberate additions of either interstitial or substitutional solutes. (C) 2016 Elsevier Ltd. All rights reserved.