949 resultados para Stochastic Differential Equations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Proceedings of the 10th Conference on Dynamical Systems Theory and Applications

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias cells) required to model them. Primary bipedal gaits (e.g., walk, run) are characterized by dihedral symmetry, whereas secondary bipedal gaits (e.g., gallop-walk, gallop- run) are characterized by a lower, cyclic symmetry. This fact has been used in tests of human odometry (e.g., Turvey et al. in P Roy Soc Lond B Biol 276:4309–4314, 2009, J Exp Psychol Hum Percept Perform 38:1014–1025, 2012). Results suggest that when distance is measured and reported by gaits from the same symmetry class, primary and secondary gaits are comparable. Switching symmetry classes at report compresses (primary to secondary) or inflates (secondary to primary) measured distance, with the compression and inflation equal in magnitude. The present research (a) extends these findings from overground locomotion to treadmill locomotion and (b) assesses a dynamics of sequentially coupled measure and report phases, with relative velocity as an order parameter, or equilibrium state, and difference in symmetry class as an imperfection parameter, or detuning, of those dynamics. The results suggest that the symmetries and dynamics of distance measurement by the human odometer are the same whether the odometer is in motion relative to a stationary ground or stationary relative to a moving ground.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nous présentons dans cette thèse des théorèmes d’existence pour des systèmes d’équations différentielles non-linéaires d’ordre trois, pour des systèmes d’équa- tions et d’inclusions aux échelles de temps non-linéaires d’ordre un et pour des systèmes d’équations aux échelles de temps non-linéaires d’ordre deux sous cer- taines conditions aux limites. Dans le chapitre trois, nous introduirons une notion de tube-solution pour obtenir des théorèmes d’existence pour des systèmes d’équations différentielles du troisième ordre. Cette nouvelle notion généralise aux systèmes les notions de sous- et sur-solutions pour le problème aux limites de l’équation différentielle du troisième ordre étudiée dans [34]. Dans la dernière section de ce chapitre, nous traitons les systèmes d’ordre trois lorsque f est soumise à une condition de crois- sance de type Wintner-Nagumo. Pour admettre l’existence de solutions d’un tel système, nous aurons recours à la théorie des inclusions différentielles. Ce résultat d’existence généralise de diverses façons un théorème de Grossinho et Minhós [34]. Le chapitre suivant porte sur l’existence de solutions pour deux types de sys- tèmes d’équations aux échelles de temps du premier ordre. Les résultats d’exis- tence pour ces deux problèmes ont été obtenus grâce à des notions de tube-solution adaptées à ces systèmes. Le premier théorème généralise entre autre aux systèmes et à une échelle de temps quelconque, un résultat obtenu pour des équations aux différences finies par Mawhin et Bereanu [9]. Ce résultat permet également d’obte- nir l’existence de solutions pour de nouveaux systèmes dont on ne pouvait obtenir l’existence en utilisant le résultat de Dai et Tisdell [17]. Le deuxième théorème de ce chapitre généralise quant à lui, sous certaines conditions, des résultats de [60]. Le chapitre cinq aborde un nouveau théorème d’existence pour un système d’in- clusions aux échelles de temps du premier ordre. Selon nos recherches, aucun résultat avant celui-ci ne traitait de l’existence de solutions pour des systèmes d’inclusions de ce type. Ainsi, ce chapitre ouvre de nouvelles possibilités dans le domaine des inclusions aux échelles de temps. Notre résultat a été obtenu encore une fois à l’aide d’une hypothèse de tube-solution adaptée au problème. Au chapitre six, nous traitons l’existence de solutions pour des systèmes d’équations aux échelles de temps d’ordre deux. Le premier théorème d’existence que nous obtenons généralise les résultats de [36] étant donné que l’hypothèse que ces auteurs utilisent pour faire la majoration a priori est un cas particulier de notre hypothèse de tube-solution pour ce type de systèmes. Notons également que notre définition de tube-solution généralise aux systèmes les notions de sous- et sur-solutions introduites pour les équations d’ordre deux par [4] et [55]. Ainsi, nous généralisons également des résultats obtenus pour des équations aux échelles de temps d’ordre deux. Finalement, nous proposons un nouveau résultat d’exis- tence pour un système dont le membre droit des équations dépend de la ∆-dérivée de la fonction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nous investiguons dans ce travail la dynamique des excitons dans une couche mince d’agrégats H autoassemblés hélicoïdaux de molécules de sexithiophène. Le couplage intermoléculaire (J=100 meV) place ce matériau dans la catégorie des semi-conducteurs à couplage de type intermédiaire. Le désordre énergétique et la forte interaction électronsphonons causent une forte localisation des excitons. Les espèces initiales se ramifient en deux états distincts : un état d’excitons autopiégés (rendement de 95 %) et un état à transfert de charge (rendement de 5%). À température de la pièce (293K), les processus de sauts intermoléculaires sont activés et l’anisotropie de la fluorescence décroît rapidement à zéro en 5 ns. À basse température (14K), les processus de sauts sont gelés. Pour caractériser la dynamique de diffusion des espèces, une expérience d’anisotropie de fluorescence a été effectuée. Celle-ci consiste à mesurer la différence entre la photoluminescence polarisée parallèlement au laser excitateur et celle polarisée perpendiculairement, en fonction du temps. Cette mesure nous donne de l’information sur la dépolarisation des excitons, qui est directement reliée à leur diffusion dans la structure supramoléculaire. On mesure une anisotropie de 0,1 après 20 ns qui perdure jusqu’à 50ns. Les états à transfert de charge causent une remontée de l’anisotropie vers une valeur de 0,15 sur une plage temporelle allant de 50 ns jusqu’à 210 ns (période entre les impulsions laser). Ces résultats démontrent que la localisation des porteurs est très grande à 14K, et qu’elle est supérieure pour les espèces à transfert de charge. Un modèle numérique simple d’équations différentielles à temps de vie radiatif et de dépolarisation constants permet de reproduire les données expérimentales. Ce modèle a toutefois ses limitations, notamment en ce qui a trait aux mécanismes de dépolarisation des excitons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce travail présente une technique de simulation de feux de forêt qui utilise la méthode Level-Set. On utilise une équation aux dérivées partielles pour déformer une surface sur laquelle est imbriqué notre front de flamme. Les bases mathématiques de la méthode Level-set sont présentées. On explique ensuite une méthode de réinitialisation permettant de traiter de manière robuste des données réelles et de diminuer le temps de calcul. On étudie ensuite l’effet de la présence d’obstacles dans le domaine de propagation du feu. Finalement, la question de la recherche du point d’ignition d’un incendie est abordée.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dans ce travail, nous adaptons la méthode des symétries conditionnelles afin de construire des solutions exprimées en termes des invariants de Riemann. Dans ce contexte, nous considérons des systèmes non elliptiques quasilinéaires homogènes (de type hydrodynamique) du premier ordre d'équations aux dérivées partielles multidimensionnelles. Nous décrivons en détail les conditions nécessaires et suffisantes pour garantir l'existence locale de ce type de solution. Nous étudions les relations entre la structure des éléments intégraux et la possibilité de construire certaines classes de solutions de rang k. Ces classes de solutions incluent les superpositions non linéaires d'ondes de Riemann ainsi que les solutions multisolitoniques. Nous généralisons cette méthode aux systèmes non homogènes quasilinéaires et non elliptiques du premier ordre. Ces méthodes sont appliquées aux équations de la dynamique des fluides en (3+1) dimensions modélisant le flot d'un fluide isentropique. De nouvelles classes de solutions de rang 2 et 3 sont construites et elles incluent des solutions double- et triple-solitoniques. De nouveaux phénomènes non linéaires et linéaires sont établis pour la superposition des ondes de Riemann. Finalement, nous discutons de certains aspects concernant la construction de solutions de rang 2 pour l'équation de Kadomtsev-Petviashvili sans dispersion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse comprend trois essais en économie de l’environnement et des ressources naturelles sous incertitude. Le premier essai propose un modèle de jeu différentiel qui analyse la pollution globale à travers la quête à l’hégémonie politique entre pays. Le second essai utilise des données boursières pour estimer une version stochastique de la règle de Hotelling et ainsi inférer sur le rôle des ressources naturelles non renouvelables dans la diversification du risque. Le troisième essai montre comment la prise en compte des perspectives futures modifie la règle de Hotelling dans un contexte de diversification du risque.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Travail réalisé en cotutelle avec l'université Paris-Diderot et le Commissariat à l'Energie Atomique sous la direction de John Harnad et Bertrand Eynard.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cette thèse est constituée de trois articles. Le premier étudie le problème de pollution globale dans un contexte environnemental incertain. Le deuxième article traite des accords internationaux sur l'environnement. Le troisième article montre comment la libéralisation du commerce peut affecter le bien-être et les taxes sur la pollution dans un monde où les pays sont hétérogènes et la pollution transfrontalière. Dans le premier article, je considère un monde dans lequel les pays souffrent uniformément de la pollution globale. Ils font face à une menace continuelle de voir les dommages causés par cette pollution globale s'accroître subitement de façon irréversible. Je caractérise le niveau des émissions, le stock de pollution, et le niveau de bien-être actualisé en équilibres coopératif et non-coopératif. L'objectif visé est d'analyser l'impact de ce type d'incertitude sur les équilibres issus des comportements stratégiques des pays. Je trouve que cette incertitude peut avoir un effet significatif sur ces équilibres. Les pays réduisent leurs émissions pour atténuer leur exposition à cette menace. Plus la menace est grande, plus les pays ajustent leurs émissions afin de réduire le stock de pollution globale. Cependant, en dépit du fait que cette incertitude diminue le bien-être net initial, elle peut à long terme avoir un effet net positif sur le bien-être. Le deuxième article étend la classe des modèles dynamiques standards traitant des accords internationaux sur l'environnement au cas où la durée de la période d'engagement à de tels accords est un paramètre que l'on peut varier de façon exogène. Nous y étudions les évolutions dans le temps de la taille des coalitions stables, du stock de pollution et du taux d'émissions en fonction de la durée d'engagement. Nous montrons que la longueur de la période d'engagement a un effet très significatif sur l'équilibre. Trois intervalles de durée d'engagement sont identifiés pour lesquels l'équilibre et sa dynamique diffèrent considérablement. Alors que pour des durées de la période d'engagement très longues on observe des coalitions stables constituées d'un petit nombre de pays, si ces durées sont suffisamment courtes on peut observer un niveau de coopération élevé. Les durées d'engagement entre ces deux extrêmes sont caractérisées par une relation inverse entre la durée de la période d'engagement et la taille des coalitions stables. Ces faits portent à croire qu'il faudrait accorder une attention toute particulière au choix de la durée d'engagement lors de l'élaboration de tels accords internationaux. Le troisième article s'inscrit dans un contexte où les activités de production des pays potentiellement hétérogènes génèrent de la pollution qui peut traverser les frontières et nuire au bien-être des pays impliqués. Dans chacun de ces pays, l'état impose des taxes sur la pollution aux firmes polluantes et des tarifs à l'importation afin de corriger cette distorsion. Ce papier a pour but d'évaluer les effets que pourrait avoir une diminution des tarifs douaniers sur la production, les taxes sur la pollution et le bien-être de ces pays. La littérature existante a étudié ce problème, mais seulement dans le cadre d'un commerce bilatéral entre pays identiques. Cet article fournit un cadre d'analyse plus réaliste dans lequel les pays ne seront pas nécessairement identiques et où le commerce pourra être multilatéral. Il devient alors possible de mettre en évidence le biais introduit en négligeant ces deux facteurs. Dans ce nouveau contexte, je montre qu'une réduction des tarifs d'importation n'augmente pas nécessairement la production; elle peut aussi nuire au bien-être, même si la pollution est purement locale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

L'insuffisance cardiaque est une maladie à grande incidence dont le traitement définitif est difficile. Les pompes d'assistance ventriculaire ont été proposées comme thérapie alternative à long terme, mais la technologie est relativement jeune et selon son design, axial ou centrifuge, le dispositif favorise soit l'hémolyse, soit la stagnation de l'écoulement sanguin. Les pompes à écoulement mixte, combinant certaines propriétés des deux types, ont été proposées comme solution intermédiaire. Pour évaluer leurs performances, nous avons effectué des comparaisons numériques entre huit pompes, deux axiales, deux centrifuges, et quatre mixtes, en employant un modèle Windkessel du système cardiovasculaire avec paramètres optimisés pour l'insuffisance cardiaque résolu avec une méthode Radau IIA3, une méthode de résolution de système d'équations différentielles ordinaires L-stable appartenant à la famille des méthodes Runge-Kutta implicites. Nos résultats semblent suggérer que les pompes d'assistance mixtes ne démontrent qu'un léger avantage comparativement aux autres types en terme de performance optimale dans le cas de l'insuffisance cardiaque, mais il faudrait effectuer plus d'essais numériques avec un modèle plus complet, entre autres avec contrôles nerveux implémentés.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce document traite premièrement des diverses tentatives de modélisation et de simulation de la nage anguilliforme puis élabore une nouvelle technique, basée sur la méthode de la frontière immergée généralisée et la théorie des poutres de Reissner-Simo. Cette dernière, comme les équations des fluides polaires, est dérivée de la mécanique des milieux continus puis les équations obtenues sont discrétisées afin de les amener à une résolution numérique. Pour la première fois, la théorie des schémas de Runge-Kutta additifs est combinée à celle des schémas de Runge-Kutta-Munthe-Kaas pour engendrer une méthode d’ordre de convergence formel arbitraire. De plus, les opérations d’interpolation et d’étalement sont traitées d’un nouveau point de vue qui suggère l’usage des splines interpolatoires nodales en lieu et place des fonctions d’étalement traditionnelles. Enfin, de nombreuses vérifications numériques sont faites avant de considérer les simulations de la nage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Le contenu de cette thèse est divisé de la façon suivante. Après un premier chapitre d’introduction, le Chapitre 2 est consacré à introduire aussi simplement que possible certaines des théories qui seront utilisées dans les deux premiers articles. Dans un premier temps, nous discuterons des points importants pour la construction de l’intégrale stochastique par rapport aux semimartingales avec paramètre spatial. Ensuite, nous décrirons les principaux résultats de la théorie de l’évaluation en monde neutre au risque et, finalement, nous donnerons une brève description d’une méthode d’optimisation connue sous le nom de dualité. Les Chapitres 3 et 4 traitent de la modélisation de l’illiquidité et font l’objet de deux articles. Le premier propose un modèle en temps continu pour la structure et le comportement du carnet d’ordres limites. Le comportement du portefeuille d’un investisseur utilisant des ordres de marché est déduit et des conditions permettant d’éliminer les possibilités d’arbitrages sont données. Grâce à la formule d’Itô généralisée il est aussi possible d’écrire la valeur du portefeuille comme une équation différentielle stochastique. Un exemple complet de modèle de marché est présenté de même qu’une méthode de calibrage. Dans le deuxième article, écrit en collaboration avec Bruno Rémillard, nous proposons un modèle similaire mais cette fois-ci en temps discret. La question de tarification des produits dérivés est étudiée et des solutions pour le prix des options européennes de vente et d’achat sont données sous forme explicite. Des conditions spécifiques à ce modèle qui permettent d’éliminer l’arbitrage sont aussi données. Grâce à la méthode duale, nous montrons qu’il est aussi possible d’écrire le prix des options européennes comme un problème d’optimisation d’une espérance sur en ensemble de mesures de probabilité. Le Chapitre 5 contient le troisième article de la thèse et porte sur un sujet différent. Dans cet article, aussi écrit en collaboration avec Bruno Rémillard, nous proposons une méthode de prévision des séries temporelles basée sur les copules multivariées. Afin de mieux comprendre le gain en performance que donne cette méthode, nous étudions à l’aide d’expériences numériques l’effet de la force et la structure de dépendance sur les prévisions. Puisque les copules permettent d’isoler la structure de dépendance et les distributions marginales, nous étudions l’impact de différentes distributions marginales sur la performance des prévisions. Finalement, nous étudions aussi l’effet des erreurs d’estimation sur la performance des prévisions. Dans tous les cas, nous comparons la performance des prévisions en utilisant des prévisions provenant d’une série bivariée et d’une série univariée, ce qui permet d’illustrer l’avantage de cette méthode. Dans un intérêt plus pratique, nous présentons une application complète sur des données financières.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Un modèle mathématique de la propagation de la malaria en temps discret est élaboré en vue de déterminer l'influence qu'un déplacement des populations des zones rurales vers les zones urbaines aurait sur la persistance ou la diminution de l'incidence de la malaria. Ce modèle, sous la forme d'un système de quatorze équations aux différences finies, est ensuite comparé à un modèle analogue mais en temps continu, qui prend la forme d'équations différentielles ordinaires. Une étude comparative avec la littérature récente permet de déterminer les forces et les faiblesses de notre modèle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ce mémoire concerne la modélisation mathématique de l’érythropoïèse, à savoir le processus de production des érythrocytes (ou globules rouges) et sa régulation par l’érythropoïétine, une hormone de contrôle. Nous proposons une extension d’un modèle d’érythropoïèse tenant compte du vieillissement des cellules matures. D’abord, nous considérons un modèle structuré en maturité avec condition limite mouvante, dont la dynamique est capturée par des équations d’advection. Biologiquement, la condition limite mouvante signifie que la durée de vie maximale varie afin qu’il y ait toujours un flux constant de cellules éliminées. Par la suite, des hypothèses sur la biologie sont introduites pour simplifier ce modèle et le ramener à un système de trois équations différentielles à retard pour la population totale, la concentration d’hormones ainsi que la durée de vie maximale. Un système alternatif composé de deux équations avec deux retards constants est obtenu en supposant que la durée de vie maximale soit fixe. Enfin, un nouveau modèle est introduit, lequel comporte un taux de mortalité augmentant exponentiellement en fonction du niveau de maturité des érythrocytes. Une analyse de stabilité linéaire permet de détecter des bifurcations de Hopf simple et double émergeant des variations du gain dans la boucle de feedback et de paramètres associés à la fonction de survie. Des simulations numériques suggèrent aussi une perte de stabilité causée par des interactions entre deux modes linéaires et l’existence d’un tore de dimension deux dans l’espace de phase autour de la solution stationnaire.