963 resultados para Step response analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé : Le glioblastome (GBM, WHO grade IV) est la tumeur cérébrale primaire la plus fréquente et la plus maligne, son pronostic reste très réservé et sa réponse aux différents traitements limitée. Récemment, une étude clinique randomisée (EORTC 26981/NCIC CE.3) a démontré que le traitement combiné de temozolomide et radiothérapie (RT/TMZ) est le meilleur dans les cas de GBM nouvellement diagnostiqués [1]. Cependant, seul un sous-groupe de patients bénéficie du traitement RT/TMZ et même parmi eux, leur survie reste très limitée. Pour tenter de mieux comprendre les réponses au traitement RT/TMZ, la biologie du GBM, identifier d'autres facteurs de résistance et découvrir de nouvelles cibles aux traitements, nous avons conduit une analyse moléculaire étendue à 73 patients inclus dans cette étude clinique. Nous avons complété les résultats moléculaires déjà obtenus par un profil génomique du nombre de copies par Array Comparative Genomic Hybridization. Afin d'atteindre nos objectifs, nous avons analysé en parallèle les données cliniques des patients et leurs profils moléculaires. Nos résultats confirment des analyses connues dans le domaine des aberrations du nombre de copies (CNA) et de profils du glioblastome. Nous avons observé une bonne corrélation entre le CNA génomique et l'expression de l'ARN messager dans le glioblastome et identifié un nouveau modèle de CNA du chromosome 7 pouvant présenter un intérêt clinique. Nous avons aussi observé par l'analyse du CNA que moins de 10% des glioblastomes conservent leurs mécanismes de suppression de tumeurs p53 et Rb1. Nous avons aussi observé que l'amplification du CDK4 peut constituer un facteur supplémentaire de résistance au traitement RT/TMZ, cette observation nécessite confirmation sur un plus grand nombre d'analyses. Nous avons montré que dans notre analyse des profils moléculaires et cliniques, il n'est pas possible de différencier le GBM à composante oligodendrogliale (GBM-O) du glioblastome. En superposant les profils moléculaires et les modèles expérimentaux in vitro, nous avons identifié WIF-1 comme un gène suppresseur de tumeur probable et une activation du signal WNT dans la pathologie du glioblastome. Ces observations pourraient servir à une meilleure compréhension de cette maladie dans le futur. Abstract : Glioblastoma, (GBM, WHO grade IV) is the most malignant and most frequent primary brain tumor with a very poor prognosis and response to therapy. A recent randomized clinical trial (EORTC26981/NCIC CE.3) established RT/TMZ as the 1St effective chemo-radiation therapy in newly diagnosed GBM [1]. However only a genetic subgroup of patients benefit from RT/TMZ and even in this subgroup overall survival remains very dismal. To explain the observed response to RT/TMZ, have a better understanding of GBM biology, identify other resistance factors and discover new drugable targets a comprehensive molecular analysis was performed in 73 of these GBM trial cohort. We complemented the available molecular data with a genomic copy number profiling by Array Comparative Genomic Hybridization. We proceeded to align the molecular profiles and the Clinical data, to meet our project objectives. Our data confirm known GBM Copy Number Aberrations and profiles. We observed a good correlation of genomic CN and mRNA expression in GBM, and identified new interesting CNA pattern for chromosome 7 with a potential clinical value. We also observed that by copy number aberration data alone, less than 10% of GBM have an intact p53 and Rb1 tumor .suppressor pathways. We equally observed that CDK4 amplification might constitute an additional RT/TMZ resistant factor, an observation that will need confirmation in a larger data set. We show that the molecular and clinical profiles in our data set, does not support the identification of GBM-O as a new entity in GBM. By combining the molecular profiles and in vitro model experiments we identify WIF1 as a potential GBM TSG and an activated WNT signaling as a pathologic event in GBM worth incorporation in attempts to better understand and impact outcome in this disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mismatch negativity (MMN) overlaps with other auditory event-related potential (ERP) components. We examined the ERPs of 50 9- to 11-year-old children for vowels /i/, /y/ and equivalent complex tones. The goal was to separate MMN from obligatory ERP components using principal component analysis and equal probability control condition. In addition to the contrast of the deviant minus standard response, we employed the contrast of the deviant minus control response, to see whether the obligatory processing contributes to MMN in children. When looking for differences in speech deviant minus standard contrast, MMN starts around 112 ms. However, when both contrasts are examined, MMN emerges for speech at 160 ms whereas for nonspeech MMN is observed at 112 ms regardless of contrast. We argue that this discriminative response to speech stimuli at 112 ms is obligatory in nature rather than reflecting change detection processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Raltegravir (RAL) achieved remarkable virologic suppression rates in randomized-clinical trials, but today efficacy data and factors for treatment failures in a routine clinical care setting are limited. METHODS: First, factors associated with a switch to RAL were identified with a logistic regression including patients from the Swiss HIV Cohort Study with a history of 3 class failure (n = 423). Second, predictors for virologic outcome were identified in an intent-to-treat analysis including all patients who received RAL. Last observation carried forward imputation was used to determine week 24 response rate (HIV-1 RNA >or= 50 copies/mL). RESULTS: The predominant factor associated with a switch to RAL in patients with suppressed baseline RNA was a regimen containing enfuvirtide [odds ratio 41.9 (95% confidence interval: 11.6-151.6)]. Efficacy analysis showed an overall response rate of 80.9% (152/188), whereas 71.8% (84/117) and 95.8% (68/71) showed viral suppression when stratified for detectable and undetectable RNA at baseline, respectively. Overall CD4 cell counts increased significantly by 42 cells/microL (P < 0.001). Characteristics of failures were a genotypic sensitivity score of the background regimen <or=1, very low RAL plasma concentrations, poor adherence, and high viral load at baseline. CONCLUSIONS: Virologic suppression rates in our routine clinical care setting were promising and comparable with data from previously published randomized-controlled trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Résumé : La première partie de ce travail de thèse est consacrée au canal à sodium épithélial (ENaC), l'élément clé du transport transépithélial de Na+ dans le néphron distal, le colon et les voies aériennes. Ce canal est impliqué dans certaines formes génétiques d'hypo- et d'hypertension (PHA I, syndrome de Liddle), mais aussi, indirectement, dans la mucoviscidose. La réabsorption transépithéliale de Na+ est principalement régulée par des hormones (aldostérone, vasopressine), mais aussi directement par le Na+, via deux phénomènes distincts, la « feedback inhibition » et la « self-inhibition » (SI). Ce second phénomène est dépendant de la concentration de Na+ extracellulaire, et montre une cinétique rapide (constante de temps d'environ 3 s). Son rôle physiologique serait d'assurer l'homogénéité de la réabsorption de Na+ et d'empêcher que celle-ci soit excessive lorsque les concentrations de Na+ sont élevées. Différents éléments appuient l'hypothèse de la présence d'un site de détection de la concentration du Na+ extracellulaire sur ENaC, gouvernant la SI. L'objectif de ce premier projet est de démontrer l'existence du site de détection impliqué dans la SI et de déterminer ses propriétés physiologiques et sa localisation. Nous avons montré que les caractéristiques de la SI (en termes de sélectivité et affinité ionique) sont différentes des propriétés de conduction du canal. Ainsi, nos résultats confirment l'hypothèse de l'existence d'un site de détection du Na+ (responsable de la transmission de l'information au mécanisme de contrôle de l'ouverture du canal), différent du site de conduction. Par ailleurs, ce site présente une affinité basse et indépendante du voltage pour le Na+ et le Li+ extracellulaires. Le site semble donc être localisé dans le domaine extracellulaire, plutôt que transmembranaire, de la protéine. L'étape suivante consiste alors à localiser précisément le site sur le canal. Des études précédentes, ainsi que des résultats préliminaires récemment obtenus, mettent en avant le rôle dans la self-inhibition du premiers tiers des boucles extracellulaires des sous-unités α et γ du canal. Le second projet tire son origine des limitations de la méthode classique pour l'étude des canaux ioniques, après expression dans les ovocytes de Xenopus laevis, par la méthode du voltage-clamp à deux électrodes, en particulier les limitations dues à la lenteur des échanges de solutions. En outre, cette méthode souffre de nombreux désavantages (manipulations délicates et peu rapides, grands volumes de solution requis). Plusieurs systèmes améliorés ont été élaborés, mais aucun ne corrige tous les désavantages de la méthode classique Ainsi, l'objectif ici est le développement d'un système, pour l'étude électrophysiologique sur ovocytes, présentant les caractéristiques suivantes : manipulation des cellules facilitée et réduite, volumes de solution de perfusion faibles et vitesse rapide d'échange de la perfusion. Un microsystème intégré sur une puce a été élaboré. Ces capacités de mesure ont été testées en utilisant des ovocytes exprimant ENaC. Des résultats similaires (courbes IV, courbes dose-réponse au benzamil) à ceux obtenus avec le système traditionnel ont été enregistrés avec le microsystème. Le temps d'échange de solution a été estimé à ~20 ms et des temps effectifs de changement ont été déterminés comme étant 8 fois plus court avec le nouveau système comparé au classique. Finalement, la SI a été étudiée et il apparaît que sa cinétique est 3 fois plus rapide que ce qui a été estimé précédemment avec le système traditionnel et son amplitude de 10 à 20 % plus importante. Le nouveau microsystème intégré apparaît donc comme adapté à la mesure électrophysiologique sur ovocytes de Xenopus, et possèdent des caractéristiques appropriées à l'étude de phénomènes à cinétique rapide, mais aussi à des applications de type « high throughput screening ». Summary : The first part of the thesis is related to the Epithelial Sodium Channel (ENaC), which is a key component of the transepithelial Na+ transport in the distal nephron, colon and airways. This channel is involved in hypo- and hypertensive syndrome (PHA I, Liddle syndrome), but also indirectly in cystic fibrosis. The transepithelial reabsorption of Na+ is mainly regulated by hormones (aldosterone, vasopressin), but also directly by Na+ itself, via two distinct phenomena, feedback inhibition and self-inhibition. This latter phenomenon is dependant on the extracellular Na+ concentration and has rapid kinetics (time constant of about 3 s). Its physiological role would be to prevent excessive Na+ reabsorption and ensure this reabsorption is homogenous. Several pieces of evidence enable to propose the hypothesis of an extracellular Na+ sensing site on ENaC, governing self-inhibition. The aim of this first project is to demonstrate the existence of the sensing site involved in self-inhibition and to determine its physiological properties and localization. We show self-inhibition characteristics (ionic selectivity and affinity) are different from the conducting properties of the channel. Our results support thus the hypothesis that the Na+ sensing site (responsible of the transmission of the information about the extracellular Na+ concentration to the channel gating mechanism), is different from the channel conduction site. Furthermore, the site has a low and voltage-insensitive affinity for extracellular Na+ or Li+. This site appears to be located in the extracellular domain rather than in the transmembrane part of the channel protein. The next step is then to precisely localize the site on the channel. Some previous studies and preliminary results we recently obtained highlight the role of the first third of the extracellular loop of the α and γ subunits of the channel in self-inhibition. The second project originates in the limitation of the classical two-electrode voltageclamp system classically used to study ion channels expressed in Xenopus /aevis oocytes, in particular limitations related to the slow solution exchange time. In addition, this technique undergoes several drawbacks (delicate manipulations, time consumption volumes). Several improved systems have been built up, but none corrected all these detriments. The aim of this second study is thus to develop a system for electrophysiological study on oocytes featuring an easy and reduced cell handling, small necessary perfusion volumes and fast fluidic exchange. This last feature establishes the link with the first project, as it should enable to improve the kinetics analysis of self-inhibition. A PDMS chip-based microsystem has been elaborated. Its electrophysiological measurement abilities have been tested using oocytes expressing ENaC. Similar measurements (IV curves of benzamil-sensitive currents, benzamil dose-response curves) have been obtained with this system, compared to the traditional one. The solution exchange time has been estimated at N20 ms and effective exchange times (on inward currents) have been determined as 8 times faster with the novel system compared to the classical one. Finally, self-inhibition has been studied and it appears its kinetics is 3 times faster and its amplitude 10 to 20 % higher than what has been previously estimated with the traditional system. The novel integrated microsystem appears therefore to be convenient for electrophysiological measurement on Xenopus oocytes, and displays features suitable for the study of fast kinetics phenomenon, but also high throughput screening applications. Résumé destiné large public : Le corps humain est composé d'organes, eux-mêmes constitués d'un très grand nombre de cellules. Chaque cellule possède une paroi appelée membrane cellulaire qui sépare l'intérieur de cette cellule (milieu intracellulaire) du liquide (milieu extracellulaire) dans lequel elle baigne. Le maintien de la composition stable de ce milieu extracellulaire est essentiel pour la survie des cellules et donc de l'organisme. Le sodium est un des composants majeurs du milieu extracellulaire, sa quantité dans celui-ci doit être particulièrement contrôlée. Le sodium joue en effet un rôle important : il conditionne le volume de ce liquide extracellulaire, donc, par la même, du sang. Ainsi, une grande quantité de sodium présente dans ce milieu va de paire avec une augmentation du volume sanguin, ce qui conduit l'organisme à souffrir d'hypertension. On se rend donc compte qu'il est très important de contrôler la quantité de sodium présente dans les différents liquides de l'organisme. Les apports de sodium dans l'organisme se font par l'alimentation, mais la quantité de sodium présente dans le liquide extracellulaire est contrôlée de manière très précise par le rein. Au niveau de cet organe, on appelle urine primaire le liquide résultant de la filtration du sang. Elle contient de nombreuses substances, des petites molécules, dont l'organisme a besoin (sodium, glucose...), qui sont ensuite récupérées dans l'organe. A la sortie du rein, l'urine finale ne contient plus que l'excédent de ces substances, ainsi que des déchets à éliminer. La récupération du sodium est plus ou moins importante, en fonction des ajustements à apporter à la quantité présente dans le liquide extracellulaire. Elle a lieu grâce à la présence de protéines, dans les membranes des cellules du rein, capables de le transporter et de le faire transiter de l'urine primaire vers le liquide extracellulaire, qui assurera ensuite sa distribution dans l'ensemble de l'organisme. Parmi ces protéines « transporteurs de sodium », nous nous intéressons à une protéine en particulier, appelée ENaC. Il a été montré qu'elle jouait un rôle important dans cette récupération de sodium, elle est en effet impliquée dans des maladies génétiques conduisant à l'hypo- ou à l'hypertension. De précédents travaux ont montré que lorsque le sodium est présent en faible quantité dans l'urine primaire, cette protéine permet d'en récupérer une très grande partie. A l'inverse, lorsque cette quantité de sodium dans l'urine primaire est importante, sa récupération par le biais d'ENaC est réduite. On parle alors d'autorégulation : la protéine elle-même est capable d'adapter son activité de transport en fonction des conditions. Ce phénomène d'autorégulation constitue a priori un mécanisme préventif visant à éviter une trop grande récupération de sodium, limitant ainsi les risques d'hypertension. La première partie de ce travail de thèse a ainsi consisté à clarifier le mécanisme d'autorégulation de la protéine ENaC. Ce phénomène se caractérise en particulier par sa grande vitesse, ce qui le rend difficile à étudier par les méthodes traditionnelles. Nous avons donc, dans une deuxième partie, développé un nouveau système permettant de mieux décrire et analyser cette « autorégulation » d'ENaC. Ce second projet a été mené en collaboration avec l'équipe de Martin Gijs de l'EPFL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microautophagy is the transfer of cytosolic components into the lysosome by direct invagination of the lysosomal membrane and subsequent budding of vesicles into the lysosomal lumen. This process is topologically equivalent to membrane invagination during multivesicular body formation and to the budding of enveloped viruses. Vacuoles are lysosomal compartments of yeasts. Vacuolar membrane invagination can be reconstituted in vitro with purified yeast vacuoles, serving as a model system for budding of vesicles into the lumen of an organelle. Using this in vitro system, we defined different reaction states. We identified inhibitors of microautophagy in vitro and used them as tools for kinetic analysis. This allowed us to characterize four biochemically distinguishable steps of the reaction. We propose that these correspond to sequential stages of vacuole invagination and vesicle scission. Formation of vacuolar invaginations was slow and temperature-dependent, whereas the final scission of the vesicle from a preformed invagination was fast and proceeded even on ice. Our observations suggest that the formation of invaginations rather than the scission of vesicles is the rate-limiting step of the overall reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In luminescence dating, the potassium concentration significantly contributes to the dose rate value in the age estimation. Within this study, fine-grain thermoluminescence dating has been applied on sherds of calcareous pottery of known age, excavated at a Roman site in Mallorca, Spain. For those of the samples that showed signs of severe potassium leaching, according to chemical and mineralogical examination, the thermoluminescence analysis provided overestimated dates. By using the known archaeological age of the samples, a corrected dose rate value can be estimated which provides the potassium concentration averaged for the burial period. Finally, a step-like model can then be used to estimate the fraction of the burial period after which most of the alteration effects took place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High performance liquid chromatography (HPLC) is the reference method for measuring concentrations of antimicrobials in blood. This technique requires careful sample preparation. Protocols using organic solvents and/or solid extraction phases are time consuming and entail several manipulations, which can lead to partial loss of the determined compound and increased analytical variability. Moreover, to obtain sufficient material for analysis, at least 1 ml of plasma is required. This constraint makes it difficult to determine drug levels when blood sample volumes are limited. However, drugs with low plasma-protein binding can be reliably extracted from plasma by ultra-filtration with a minimal loss due to the protein-bound fraction. This study validated a single-step ultra-filtration method for extracting fluconazole (FLC), a first-line antifungal agent with a weak plasma-protein binding, from plasma to determine its concentration by HPLC. Spiked FLC standards and unknowns were prepared in human and rat plasma. Samples (240 microl) were transferred into disposable microtube filtration units containing cellulose or polysulfone filters with a 5 kDa cut-off. After centrifugation for 60 min at 15000g, FLC concentrations were measured by direct injection of the filtrate into the HPLC. Using cellulose filters, low molecular weight proteins were eluted early in the chromatogram and well separated from FLC that eluted at 8.40 min as a sharp single peak. In contrast, with polysulfone filters several additional peaks interfering with the FLC peak were observed. Moreover, the FLC recovery using cellulose filters compared to polysulfone filters was higher and had a better reproducibility. Cellulose filters were therefore used for the subsequent validation procedure. The quantification limit was 0.195 mgl(-1). Standard curves with a quadratic regression coefficient &gt; or = 0.9999 were obtained in the concentration range of 0.195-100 mgl(-1). The inter and intra-run accuracies and precisions over the clinically relevant concentration range, 1.875-60 mgl(-1), fell well within the +/-15% variation recommended by the current guidelines for the validation of analytical methods. Furthermore, no analytical interference was observed with commonly used antibiotics, antifungals, antivirals and immunosuppressive agents. Ultra-filtration of plasma with cellulose filters permits the extraction of FLC from small volumes (240 microl). The determination of FLC concentrations by HPLC after this single-step procedure is selective, precise and accurate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Variability in response to atypical antipsychotic drugs is due to genetic and environmental factors. Cytochrome P450 (CYP) isoforms are implicated in the metabolism of drugs, while the P-glycoprotein transporter (P-gp), encoded by the ABCB1 gene, may influence both the blood and brain drug concentrations. This study aimed to identify the possible associations of CYP and ABCB1 genetic polymorphisms with quetiapine and norquetiapine plasma and cerebrospinal fluid (CSF) concentrations and with response to treatment. Twenty-two patients with schizophrenia receiving 600 mg of quetiapine daily were genotyped for four CYP isoforms and ABCB1 polymorphisms. Quetiapine and norquetiapine peak plasma and CSF concentrations were measured after 4 weeks of treatment. Stepwise multiple regression analysis revealed that ABCB1 3435C > T (rs1045642), 2677G > T (rs2032582) and 1236C > T (rs1128503) polymorphisms predicted plasma quetiapine concentrations, explaining 41% of the variability (p = 0.001). Furthermore, the ABCB1 polymorphisms predicted 48% (p = 0.024) of the variability of the Δ PANSS total score, with the non-carriers of the 3435TT showing higher changes in the score. These results suggest that ABCB1 genetic polymorphisms may be a predictive marker of quetiapine treatment in schizophrenia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Survival of children born prematurely or with very low birth weight has increased dramatically, but the long term developmental outcome remains unknown. Many children have deficits in cognitive capacities, in particular involving executive domains and those disabilities are likely to involve a central nervous system deficit. To understand their neurostructural origin, we use DTI. Structurally segregated and functionally regions of the cerebral cortex are interconnected by a dense network of axonal pathways. We noninvasively map these pathways across cortical hemispheres and construct normalized structural connection matrices derived from DTI MR tractography. Group comparisons of brain connectivity reveal significant changes in fiber density in case of children with poor intrauterine grown and extremely premature children (gestational age<28 weeks at birth) compared to control subjects. This changes suggest a link between cortico-axonal pathways and the central nervous system deficit. Methods: Sixty premature born infants (5-6 years old) were scanned on clinical 3T scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany) at two hospitals (HUG, Geneva and CHUV, Lausanne). For each subject, T1-weighted MPRAGE images (TR/TE=2500/2.91,TI=1100, resolution=1x1x1mm, matrix=256x154) and DTI images (30 directions, TR/TE=10200/107, in-plane resolution=1.8x1.8x2mm, 64 axial, matrix=112x112) were acquired. Parent(s) provided written consent on prior ethical board approval. The extraction of the Whole Brain Structural Connectivity Matrix was performed following (Cammoun, 2009 and Hagmann, 2008). The MPARGE images were registered using an affine registration to the non-weighted-DTI and WM-GM segmentation performed on it. In order to have equal anatomical localization among subjects, 66 cortical regions with anatomical landmarks were created using the curvature information, i.e. sulcus and gyrus (Cammoun et al, 2007; Fischl et al, 2004; Desikan et al, 2006) with freesurfer software (http://surfer.nmr.mgh.harvard.edu/). Tractography was performed in WM using an algorithm especially designed for DTI/DSI data (Hagmann et al., 2007) and both information were then combined in a matrix. Each row and column of the matrix corresponds to a particular ROI. Each cell of index (i,j) represents the fiber density of the bundle connecting the ROIs i and j. Subdividing each cortical region, we obtained 4 Connectivity Matrices of different resolution (33, 66, 125 and 250 ROI/hemisphere) for each subject . Subjects were sorted in 3 different groups, namely (1) control, (2) Intrauterine Growth Restriction (IUGR), (3) Extreme Prematurity (EP), depending on their gestational age, weight and percentile-weight score at birth. Group-to-group comparisons were performed between groups (1)-(2) and (1)-(3). The mean age at examination of the three groups were similar. Results: Quantitative analysis were performed between groups to determine fibers density differences. For each group, a mean connectivity matrix with 33ROI/hemisphere resolution was computed. On the other hand, for all matrix resolutions (33,66,125,250 ROI/hemisphere), the number of bundles were computed and averaged. As seen in figure 1, EP and IUGR subjects present an overall reduction of fibers density in both interhemispherical and intrahemispherical connections. This is given quantitatively in table 1. IUGR subjects presents a higher percentage of missing fiber bundles than EP when compared to control subjects (~16% against 11%). When comparing both groups to control subjects, for the EP subjects, the occipito-parietal regions seem less interhemispherically connected whilst the intrahemispherical networks present lack of fiber density in the lymbic system. Children born with IUGR, have similar reductions in interhemispherical connections than the EP. However, the cuneus and precuneus connections with the precentral and paracentral lobe are even lower than in the case of the EP. For the intrahemispherical connections the IUGR group preset a loss of fiber density between the deep gray matter structures (striatum) and the frontal and middlefrontal poles, connections typically involved in the control of executive functions. For the qualitative analysis, a t-test comparing number of bundles (p-value<0.05) gave some preliminary significant results (figure 2). Again, even if both IUGR and EP appear to have significantly less connections comparing to the control subjects, the IUGR cohort seems to present a higher lack of fiber density specially relying the cuneus, precuneus and parietal areas. In terms of fiber density, preliminary Wilcoxon tests seem to validate the hypothesis set by the previous analysis. Conclusions: The goal of this study was to determine the effect of extreme prematurity and poor intrauterine growth on neurostructural development at the age of 6 years-old. This data indicates that differences in connectivity may well be the basis for the neurostructural and neuropsychological deficit described in these populations in the absence of overt brain lesions (Inder TE, 2005; Borradori-Tolsa, 2004; Dubois, 2008). Indeed, we suggest that IUGR and prematurity leads to alteration of connectivity between brain structures, especially in occipito-parietal and frontal lobes for EP and frontal and middletemporal poles for IUGR. Overall, IUGR children have a higher loss of connectivity in the overall connectivity matrix than EP children. In both cases, the localized alteration of connectivity suggests a direct link between cortico-axonal pathways and the central nervous system deficit. Our next step is to link these connectivity alterations to the performance in executive function tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: Total ankle replacement (TAR) is increasingly used for treatment of primary or posttraumatic arthritis of the ankle joint, if joint movement is intended to be preserved. Data on characteristics and treatment of ankle prosthetic joint infection (PJI) is limited and no validated therapeutic algorithm exist. Therefore, we analyzed all infections, which occurred in a cohort of implanted ankle prostheses during a 5-year-period.Methods: Between 06/2004 and 12/2008, all patients with an implanted ankle prosthesis at our institution were retrospectively reviewed. All patients were operated by the same surgical team. Ankle PJI was defined as visible purulence, acute inflammation on histopathology, sinus tract, or microbial growth in periprosthetic tissue or sonication fluid of the removed prosthesis. The surgery on the infected ankle prosthesis and the follow-up were performed by the surgical team, who implanted the prosthesis. A specialized septic team consisting of an orthopaedic surgeon and infectious diseases consultant were included in the treatment.Results: During the study period, 92 total ankle prostheses were implanted in 90 patients (mean age 61 years, range 28-80 years). 78 patients had posttraumatic arthritis, 11 rheumatoid arthritis and 3 other degenerative disorder. Ankle PJI occurred in 3 of 92 TAR (3.3%), occurring 1, 2 and 24 months after implantation; the causative organisms were Enterobacter cloacae, Streptococcus pyogenes and Staphylococcus epidermidis, respectively. The ankle prosthesis was removed in all infected patients, including debridement of the surrounding tissue was debrided and insertion of an antibiotic loaded spacer. Provisional arthrodesis was performed by external fixation in two patients and by plaster cast in one. A definitive ankle arthrodesis with a retrograde nail was performed 6 to 8 weeks after prosthesis removal. One patient needed a flap coverage. All 3 patients received intravenous antibiotic treatment for 2 weeks, followed by oral antibiotics for 4-6 weeks. At follow-up visit up to 18 months after start of treatment, all patients were without clinical or laboratory signs of infection.Conclusions: The infection incidence after TAR was 3.3%, which is slightly higher than reported after hip (<1%) or knee arthroplasty (<2%). A two-step approach consisting of removal of the infected prosthesis, combined with local and systemic antibiotic treatment, followed by definitive ankle arthrodesis shows good results. Larger patient cohort and longer follow-up evaluation is needed to define the optimal treatment approach for ankle PJI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using rice (Oryza sativa) as a model crop species, we performed an in-depth temporal transcriptome analysis, covering the early and late stages of Pi deprivation as well as Pi recovery in roots and shoots, using next-generation sequencing. Analyses of 126 paired-end RNA sequencing libraries, spanning nine time points, provided a comprehensive overview of the dynamic responses of rice to Pi stress. Differentially expressed genes were grouped into eight sets based on their responses to Pi starvation and recovery, enabling the complex signaling pathways involved in Pi homeostasis to be untangled. A reference annotation-based transcript assembly was also generated, identifying 438 unannotated loci that were differentially expressed under Pi starvation. Several genes also showed induction of unannotated splice isoforms under Pi starvation. Among these, PHOSPHATE2 (PHO2), a key regulator of Pi homeostasis, displayed a Pi starvation-induced isoform, which was associated with increased translation activity. In addition, microRNA (miRNA) expression profiles after long-term Pi starvation in roots and shoots were assessed, identifying 20 miRNA families that were not previously associated with Pi starvation, such as miR6250. In this article, we present a comprehensive spatio-temporal transcriptome analysis of plant responses to Pi stress, revealing a large number of potential key regulators of Pi homeostasis in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of semi-distributed hydrological models to large, heterogeneous watersheds deals with several problems. On one hand, the spatial and temporal variability in catchment features should be adequately represented in the model parameterization, while maintaining the model complexity in an acceptable level to take advantage of state-of-the-art calibration techniques. On the other hand, model complexity enhances uncertainty in adjusted model parameter values, therefore increasing uncertainty in the water routing across the watershed. This is critical for water quality applications, where not only streamflow, but also a reliable estimation of the surface versus subsurface contributions to the runoff is needed. In this study, we show how a regularized inversion procedure combined with a multiobjective function calibration strategy successfully solves the parameterization of a complex application of a water quality-oriented hydrological model. The final value of several optimized parameters showed significant and consistentdifferences across geological and landscape features. Although the number of optimized parameters was significantly increased by the spatial and temporal discretization of adjustable parameters, the uncertainty in water routing results remained at reasonable values. In addition, a stepwise numerical analysis showed that the effects on calibration performance due to inclusion of different data types in the objective function could be inextricably linked. Thus caution should be taken when adding or removing data from an aggregated objective function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generat ed according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Although the central role of the immune system for tumor prognosis is generally accepted, a single robust marker is not yet available. EXPERIMENTAL DESIGN: On the basis of receiver operating characteristic analyses, robust markers were identified from a 60-gene B cell-derived metagene and analyzed in gene expression profiles of 1,810 breast cancer; 1,056 non-small cell lung carcinoma (NSCLC); 513 colorectal; and 426 ovarian cancer patients. Protein and RNA levels were examined in paraffin-embedded tissue of 330 breast cancer patients. The cell types were identified with immunohistochemical costaining and confocal fluorescence microscopy. RESULTS: We identified immunoglobulin κ C (IGKC) which as a single marker is similarly predictive and prognostic as the entire B-cell metagene. IGKC was consistently associated with metastasis-free survival across different molecular subtypes in node-negative breast cancer (n = 965) and predicted response to anthracycline-based neoadjuvant chemotherapy (n = 845; P < 0.001). In addition, IGKC gene expression was prognostic in NSCLC and colorectal cancer. No association was observed in ovarian cancer. IGKC protein expression was significantly associated with survival in paraffin-embedded tissues of 330 breast cancer patients. Tumor-infiltrating plasma cells were identified as the source of IGKC expression. CONCLUSION: Our findings provide IGKC as a novel diagnostic marker for risk stratification in human cancer and support concepts to exploit the humoral immune response for anticancer therapy. It could be validated in several independent cohorts and carried out similarly well in RNA from fresh frozen as well as from paraffin tissue and on protein level by immunostaining.