990 resultados para Stars: emission-line
Resumo:
High-quality self-assembled V(2)O(5) nanofiber-bundles (NBs) are synthesized by a simple and direct hydrothermal method using a vanadium(V) hydroxylamido complex as a vanadium source in the presence of HNO(3). The possible reaction pathway for the formation of V(2)O(5) NBs is discussed and demonstrated that HNO(3) functions both as an oxidizing and as an acidification agent. V(2)O(5) NBs are single-crystals of an orthorhombic phase that have grown along the [010] direction. A bundle is made of indefinite numbers of homogeneous V(2)O(5) nanofibers where nanofibers have lengths up to several micrometres and widths ranging between 20 and 50 nm. As-prepared V(2)O(5) NBs display a high electrochemical performance in a non-aqueous electrolyte as a cathode material for lithium ion batteries. Field emission properties are also investigated which shows that a low turn-on field of similar to 1.84 V mu m(-1) is required to draw the emission current density of 10 mu Lambda cm(-2).
Resumo:
Approximate closed-form expressions for the propagation characteristics of a microstrip line with a symmetrical aperture in its ground plane are reported in this article. Well-known expressions for the characteristic impedance of a regular microstrip line have been modified to incorporate the effect of this aperture. The accuracy of these expressions for various values of substrate thickness, permittivity and line width has been studied in detail by fullwave simulations. This has been further verified by measurements. These expressions are easier to compute and find immense use in the design of broadband filters, tight couplers, power dividers, transformers, delay lines, and matching circuits. A broadband filter with aperture in ground plane is demonstrated in this article. (c) 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2012.
Resumo:
A novel salicylideneaniline type fluorescent organogelator based on a 3,4,5-(tri-dodecyloxy)benzoyl group immobilizes aromatic solvents. The resulting gels show enhancement in emission and thermochromic/non-photochromic behaviour during sol-to-gel transition.
Resumo:
In this work, we present field emission characteristics of multi-wall carbon nanotube (MWCNT)-polystyrene composites at various weight fractions along the cross-section of sample. Scanning electron microscope images in cross-sectional view reveal that MWCNTs are homogeneously distributed across the thickness and the density of protruding tubes can be scaled with weight fraction of the composite film. Field emission from composites has been observed to vary considerably with density of MWCNTs in the polymer matrix. High current density of 100 mA/cm(2) was achieved at a field of 2.2 V/lm for 0.15 weight fraction. The field emission is observed to follow the Fowler-Nordheim tunneling mechanism, however, electrostatic screening is observed to play a role in limiting the current density at higher weight fractions. (C) 2012 American Institute of Physics. [doi:10.1063/1.3685754]
Resumo:
This paper presents the development of a neural network based power system stabilizer (PSS) designed to enhance the damping characteristics of a practical power system network representing a part of Electricity Generating Authority of Thailand (EGAT) system. The proposed PSS consists of a neuro-identifier and a neuro-controller which have been developed based on functional link network (FLN) model. A recursive on-line training algorithm has been utilized to train the two neural networks. Simulation results have been obtained under various operating conditions and severe disturbance cases which show that the proposed neuro-PSS can provide a better damping to the local as well as interarea modes of oscillations as compared to a conventional PSS
Resumo:
In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.
Resumo:
There is a lot of pressure on all the developed and second world countries to produce low emission power and distributed generation (DG) is found to be one of the most viable ways to achieve this. DG generally makes use of renewable energy sources like wind, micro turbines, photovoltaic, etc., which produce power with minimum green house gas emissions. While installing a DG it is important to define its size and optimal location enabling minimum network expansion and line losses. In this paper, a methodology to locate the optimal site for a DG installation, with the objective to minimize the net transmission losses, is presented. The methodology is based on the concept of relative electrical distance (RED) between the DG and the load points. This approach will help to identify the new DG location(s), without the necessity to conduct repeated power flows. To validate this methodology case studies are carried out on a 20 node, 66kV system, a part of Karnataka Transco and results are presented.
Resumo:
Since the end of second world war, extra high voltage ac transmission has seen its development. The distances between generating and load centres as well as the amount of power to be handled increased tremendously for last 50 years. The highest commercial voltage has increased to 765 kV in India and 1,200 kV in many other countries. The bulk power transmission has been mostly performed by overhead transmission lines. The dual task of mechanically supporting and electrically isolating the live phase conductors from the support tower is performed by string insulators. Whether in clean condition or under polluted conditions, the electrical stress distribution along the insulators governs the possible flashover, which is quite detrimental to the system. Hence the present investigation aims to study accurately, the field distribution for various types of porcelain/ceramic insulators (Normal and Antifog discs) used for high-voltage transmission. The surface charge simulation method is employed for the field computation. A comparison on normalised surface resistance, which is an indicator for the stress concentration under polluted condition, is also attempted.