972 resultados para SrSnO3, Sr (x) Ba (1-x) and SNO3 BaSnO3


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caveolin-1 was discovered as a major substrate for v-Src, but the effect of its tyrosine phosphorylation has not been known. We generated a specific antibody (PY14) to caveolin-1 phosphorylated at tyrosine 14 and studied the significance of the modification. By Western blotting of lysates of v-Src–expressing cells, PY14 recognized not only a 22-kDa band (the position of nonphosphorylated caveolin-1) but bands at 23–24 and 25 kDa. Bands of slower mobility were diminished by dephosphorylation and were also observed for mutant caveolin-1 lacking tyrosine 14. By immunofluorescence microscopy, PY14 did not label normal cells but detected large dots in v-Src–expressing cells. Immunoelectron microscopy revealed that the dots corresponded to aggregated caveolae and/or vesicles of various sizes; besides, the label was observed in intramembrane particle-free areas in the plasma membrane, which appeared to have been formed by fusion of flattened caveolae. A positive reaction with PY14 was found in normal cells after vanadate or pervanadate treatment; it occurred mainly at 22 kDa by Western blotting and was not seen as large dots by immunofluorescence microscopy. Detergent solubility, oligomerization, and association with caveolin-2 were observed similarly for caveolin-1 in normal and v-Src–expressing cells. The results indicate that phosphorylation of caveolin-1 in v-Src–expressing cells occurs at multiple residues and induces flattening, aggregation, and fusion of caveolae and/or caveolae-derived vesicles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

bEND.3 cells are polyoma middle T-transformed mouse brain endothelial cells that express very little or no thrombospondin-1, a natural inhibitor of angiogenesis, but express high levels of platelet endothelial cell adhesion molecule-1 (PECAM-1) that localizes to sites of cell–cell contact. Here, we have examined the role of PECAM-1 in regulation of bEND.3 cell proliferation, migration, morphogenesis, and hemangioma formation. We show that down-regulating PECAM-1 expression by antisense transfection of bEND.3 cells has a dramatic effect on their morphology, proliferation, and morphogenesis on Matrigel. There is an optimal level for PECAM-1 expression such that high levels of PECAM-1 inhibit, whereas moderate levels of PECAM-1 stimulate, endothelial cell morphogenesis. The down-regulation of PECAM-1 in bEND.3 cells resulted in reexpression of endogenous thrombospondin-1 and its antiangiogenic receptor CD36. The expression of the vascular endothelial growth factor receptors flk-1 and flt-1, as well as integrins and metalloproteinases (which are involved in angiogenesis), were also affected. These observations are consistent with the changes observed in proliferation, migration, and adhesion characteristics of the antisense-transfected bEND.3 cells as well as with their lack of ability to form hemangiomas in mice. Thus, a reciprocal relationship exists between thrombospondin-1 and PECAM-1 expression, such that these two molecules appear to be constituents of a “switch” that regulates in concert many components of the angiogenic and differentiated phenotypes of endothelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drosophila Enabled (Ena) was initially identified as a dominant genetic suppressor of mutations in the Abelson tyrosine kinase and, more recently, as a member of the Ena/human vasodilator-stimulated phosphoprotein (VASP) family of proteins. We have used genetic, biochemical, and cell biological approaches to demonstrate the functional relationship between Ena and human VASP. In addition, we have defined the roles of Ena domains identified as essential for its activity in vivo. We have demonstrated that VASP rescues the embryonic lethality associated with loss of Ena function in Drosophila and have shown that Ena, like VASP, is associated with actin filaments and focal adhesions when expressed in cultured cells. To define sequences that are central to Ena function, we have characterized the molecular lesions present in two lethal ena mutant alleles that affected the Ena/VASP homology domain 1 (EVH1) and EVH2. A missense mutation that resulted in an amino acid substitution in the EVH1 domain eliminated in vitro binding of Ena to the cytoskeletal protein zyxin, a previously reported binding partner of VASP. A nonsense mutation that resulted in a C-terminally truncated Ena protein lacking the EVH2 domain failed to form multimeric complexes and exhibited reduced binding to zyxin and the Abelson Src homology 3 domain. Our analysis demonstrates that Ena and VASP are functionally homologous and defines the conserved EVH1 and EVH2 domains as central to the physiological activity of Ena.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contact of cultured mammary epithelial cells with the basement membrane protein laminin induces multiple responses, including cell shape changes, growth arrest, and, in the presence of prolactin, transcription of the milk protein β-casein. We sought to identify the specific laminin receptor(s) mediating the multiple cell responses to laminin. Using assays with clonal mammary epithelial cells, we reveal distinct functions for the α6β4 integrin, β1 integrins, and an E3 laminin receptor. Signals from laminin for β-casein expression were inhibited in the presence of function-blocking antibodies against both the α6 and β1 integrin subunits and by the laminin E3 fragment. The α6-blocking antibody perturbed signals mediated by the α6β4 integrin, and the β1-blocking antibody perturbed signals mediated by another integrin, the α subunit(s) of which remains to be determined. Neither α6- nor β1-blocking antibodies perturbed the cell shape changes resulting from cell exposure to laminin. However, the E3 laminin fragment and heparin both inhibited cell shape changes induced by laminin, thereby implicating an E3 laminin receptor in this function. These results elucidate the multiplicity of cell-extracellular matrix interactions required to integrate cell structure and signaling and ultimately permit normal cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the activities of IFN-γ are the result of STAT1-mediated transcriptional responses. In this study, we show that the BRCA1 tumor suppressor acts in concert with STAT1 to differentially activate transcription of a subset of IFN-γ target genes and mediates growth inhibition by this cytokine. After IFN-γ treatment, induction of the cyclin-dependent kinase inhibitor, p21WAF1, was synergistically activated by BRCA1, whereas the IRF-1 gene was unaffected. Importantly, the differential induction of p21WAF1 was impaired in breast cancer cells homozygous for the mutant BRCA1 5382C allele. Biochemical analysis illustrated that the mechanism of this transcriptional synergy involves interaction between BRCA1 aa 502–802 and the C-terminal transcriptional activation domain of STAT1 including Ser-727 whose phosphorylation is crucial for transcriptional activation. Significantly, STAT1 proteins mutated at Ser-727 bind poorly to BRCA1, reinforcing the importance of Ser-727 in the recruitment of transcriptional coactivators by STAT proteins. These findings reveal a novel mechanism for BRCA1 function in the IFN-γ-dependent tumor surveillance system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to Khan et al. [Khan, A. U., Kovacic, D., Kolbanovskiy, A., Desai, M., Frenkel, K. & Geacintov, N. E. (2000) Proc. Natl. Acad. Sci. USA 97, 2984–2989], peroxynitrite (ONOO−) decomposes after protonation to singlet oxygen (1ΔgO2) and singlet oxonitrate (nitroxyl, 1NO−) in high yield. They claimed to have observed nitrosyl hemoglobin from the reaction of NO− with methemoglobin; however, contamination with hydrogen peroxide gave rise to ferryl hemoglobin, the spectrum of which was mistakenly assigned to nitrosyl hemoglobin. We have carried out UV–visible and EPR experiments with methemoglobin and hydrogen peroxide-free peroxynitrite and find that no NO− is formed. With this peroxynitrite preparation, no light emission from singlet oxygen at 1270 nm is observed, nor is singlet oxygen chemically trapped; however, singlet oxygen was trapped when hydrogen peroxide was also present, as previously described [Di Mascio, P., Bechara, E. J. H., Medeiros, M. H. G., Briviba, K. & Sies, H. (1994) FEBS Lett. 355, 287–289]. Quantum mechanical and thermodynamic calculations show that formation of the postulated intermediate, a cyclic form of peroxynitrous acid (trioxazetidine), and the products 1NO− and 1ΔgO2 requires Gibbs energies of ca. +415 kJ⋅mol−1 and ca. +180 kJ⋅mol−1, respectively. Our results show that the results of Khan et al. are best explained by interference from contaminating hydrogen peroxide left from the synthesis of peroxynitrite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sec7 domains (Sec7d) catalyze the exchange of guanine nucleotide on ARFs. Recent studies indicated that brefeldin A (BFA) inhibits Sec7d-catalyzed nucleotide exchange on ARF1 in an uncompetitive manner by trapping an early intermediate of the reaction: a complex between GDP-bound ARF1 and Sec7d. Using 3H-labeled BFA, we show that BFA binds to neither isolated Sec7d nor isolated ARF1–GDP, but binds to the transitory Sec7d–ARF1–GDP complex and stabilizes it. Two pairs of residues at positions 190–191 and 198–208 (Arno numbering) in Sec7d contribute equally to the stability of BFA binding, which is also sensitive to mutation of H80 in ARF1. The catalytic glutamic (E156) residue of Sec7d is not necessary for BFA binding. In contrast, BFA does not bind to the intermediate catalytic complex between nucleotide-free ARF1 and Sec7d. These results suggest that, on initial docking steps between ARF1–GDP and Sec7d, BFA inserts like a wedge between the switch II region of ARF1–GDP and a surface encompassing residues 190–208, at the border of the characteristic hydrophobic groove of Sec7d. Bound BFA would prevent the switch regions of ARF1–GDP from reorganizing and forming tighter contacts with Sec7d and thereby would maintain the bound GDP of ARF1 at a distance from the catalytic glutamic finger of Sec7d.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Certain HLA-B antigens have been associated with lack of progression to AIDS. HLA-B alleles can be divided into two mutually exclusive groups based on the expression of the molecular epitopes HLA-Bw4 and HLA-Bw6. Notably, in addition to its role in presenting viral peptides for immune recognition, the HLA-Bw4, but not HLA-Bw6, motif functions as a ligand for a natural killer cell inhibitory receptor (KIR). Here, we show that profound suppression of HIV-1 viremia is significantly associated with homozygosity for HLA-B alleles that share the HLA-Bw4 epitope. Furthermore, homozygosity for HLA-Bw4 alleles was also significantly associated with the ability to remain AIDS free and to maintain a normal CD4 T cell count in a second cohort of HIV-1-infected individuals with well defined dates of seroconversion. This association was independent of the presence of a mutation in CC chemokine receptor 5 (CCR5) associated with resistance to HIV-1 infection, and it was independent of the presence of HLA alleles that could potentially confound the results. We conclude that homozygosity for HLA-Bw4-bearing B alleles is associated with a significant advantage and that the HLA-Bw4 motif is important in AIDS pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological and animal-based investigations have indicated that the development of skin cancer is in part associated with poor dietary practices. Lipid content and subsequently the derived fatty acid composition of the diet are believed to play a major role in the development of tumorigenesis. Omega 3 (ω3) fatty acids, including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), can effectively reduce the risk of skin cancer whereas omega 6 (ω6) fatty acids such as arachidonic acid (AA) reportedly promote risk. To investigate the effects of fatty acids on tumorigenesis, we performed experiments to examine the effects of the ω3 fatty acids EPA and DHA and of the ω6 fatty acid AA on phorbol 12-tetradecanoate 13-acetate (TPA)-induced or epidermal growth factor (EGF)-induced transcription activator protein 1 (AP-1) transactivation and on the subsequent cellular transformation in a mouse epidermal JB6 cell model. DHA treatment resulted in marked inhibition of TPA- and EGF-induced cell transformation by inhibiting AP-1 transactivation. EPA treatment also inhibited TPA-induced AP-1 transactivation and cell transformation but had no effect on EGF-induced transformation. AA treatment had no effect on either TPA- or EGF-induced AP-1 transactivation or transformation, but did abrogate the inhibitory effects of DHA on TPA- or EGF-induced AP-1 transactivation and cell transformation in a dose-dependent manner. The results of this study demonstrate that the inhibitory effects of ω3 fatty acids on tumorigenesis are more significant for DHA than for EPA and are related to an inhibition of AP-1. Similarly, because AA abrogates the beneficial effects of DHA, the dietary ratio of ω6 to ω3 fatty acids may be a significant factor in mediating tumor development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl− and K+. The postshrinking volume recovery is achieved by K+ and Cl− influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The signaling pathways associated with estrogen-induced proliferation of epithelial cells in the reproductive tract have not been defined. To identify receptor tyrosine kinases that are activated in vivo by 17 beta-estradiol (E2), uteri from ovariectomized mice were examined for enhanced tyrosine phosphorylation of various receptors and a receptor substrate following treatment with this hormone. Within 4 hr after hormone exposure, extracts showed increased phosphotyrosine (P-Tyr) immunoreactivity at several bands, including 170- and 180-kDa; these bands were still apparent at 24 hr after E2. Analysis of immunoprecipitates from uterine extracts revealed that E2 enhanced tyrosine phosphorylation of the insulin-like growth factor-1 receptor (IGF-1R) and insulin receptor substrate-1 (IRS-1) by 6 hr. Comparison of supernatants from IRS-1 and control rabbit IgG immunoprecipitates indicated that the 170-kDa P-Tyr band in extracts was equivalent to IRS-1. The receptors for epidermal growth factor, platelet-derived growth factor, and basic fibroblast growth factor did not exhibit an E2-induced increase in P-Tyr content. The nonestrogenic steroid hormones examined did not stimulate the P-Tyr content of IGF-1R or IRS-1. Immunolocalization of P-Tyr and IRS-1 revealed strong reactivity in the epithelial layer of the uterus from E2-treated mice, suggesting that the majority of P-Tyr bands observed in immunoblots originate in the epithelium. Since hormonal activation of IRS-1 is epithelial, estrogen-specific, and initiated before maximal DNA synthesis occurs following treatment with hormone, this protein, as part of the IGF-1R pathway, may be important in mediating estrogen-stimulated proliferation in the uterus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Defective-interfering viruses are known to modulate virus pathogenicity. We describe conditionally replicating HIV-1 (crHIV) vectors that interfere with wild-type HIV-1 (wt-HIV) replication and spread. crHIV vectors are defective-interfering HIV genomes that do not encode viral proteins and replicate only in the presence of wt-HIV helper virus. In cells that contain both wt-HIV and crHIV genomes, the latter are shown to have a selective advantage for packaging into progeny virions because they contain ribozymes that cleave wt-HIV RNA but not crHIV RNA. A crHIV vector containing a triple anti-U5 ribozyme significantly interferes with wt-HIV replication and spread. crHIV vectors are also shown to undergo the full viral replicative cycle after complementation with wt-HIV helper-virus. The application of defective interfering crHIV vectors may result in competition with wt-HIVs and decrease pathogenic viral loads in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ultrastructural pathology of myelinated axons in mice infected experimentally with the Fujisaki strain of Creutzfeldt-Jakob disease (CJD) virus is characterized by myelin sheath vacuolation that closely resembles that induced in murine spinal cord organotypic cultures by tumor necrosis factor alpha (TNF-alpha), a cytokine produced by astrocytes and macrophages. To clarify the role of TNF-alpha in experimental CJD, we investigated the expression of TNF-alpha in brain tissues from CJD virus-infected mice at weekly intervals after inoculation by reverse transcription-coupled PCR, Northern and Western blot analyses, and immunocytochemical staining. Neuropathological findings by electron microscopy, as well as expression of interleukin 1 alpha and glial fibrillary acidic protein, were concurrently monitored. As determined by reverse transcription-coupled PCR, the expression of TNF-alpha, interleukin 1 alpha, and glial fibrillary acidic protein was increased by approximately 200-fold in the brains of CJD virus-inoculated mice during the course of disease. By contrast, beta-actin expression remained unchanged. Progressively increased expression of TNF-alpha in CJD virus-infected brain tissues was verified by Northern and Western blot analyses, and astrocytes in areas with striking myelin sheath vacuolation were intensely stained with an antibody against murine TNF-alpha. The collective findings of TNF-alpha overexpression during the course of clinical disease suggest that TNF-alpha may mediate the myelin sheath vacuolation observed in experimental CJD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the replication of human immunodeficiency virus type 1 (HIV-1), gag MA (matrix), a major structural protein of the virus, carries out opposing targeting functions. During virus assembly, gag MA is cotranslationally myristoylated, a modification required for membrane targeting of gag polyproteins. During virus infection, however, gag MA, by virtue of a nuclear targeting signal at its N terminus, facilitates the nuclear localization of viral DNA and establishment of the provirus. We now show that phosphorylation of gag MA on tyrosine and serine prior to and during virus infection facilitates its dissociation from the membrane, thus allowing it to translocate to the nucleus. Inhibition of gag MA phosphorylation either on tyrosine or on serine prevents gag MA-mediated nuclear targeting of viral nucleic acids and impairs virus infectivity. The requirement for gag MA phosphorylation in virus infection is underscored by our finding that a serine/threonine kinase is associated with virions of HIV-1. These results reveal a novel level of regulation of primate lentivirus infectivity.